首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   38篇
  国内免费   30篇
测绘学   27篇
大气科学   26篇
地球物理   135篇
地质学   319篇
海洋学   32篇
天文学   78篇
综合类   18篇
自然地理   44篇
  2024年   1篇
  2023年   4篇
  2022年   15篇
  2021年   22篇
  2020年   23篇
  2019年   24篇
  2018年   55篇
  2017年   50篇
  2016年   50篇
  2015年   30篇
  2014年   44篇
  2013年   62篇
  2012年   31篇
  2011年   39篇
  2010年   23篇
  2009年   26篇
  2008年   23篇
  2007年   18篇
  2006年   11篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1993年   2篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有679条查询结果,搜索用时 15 毫秒
591.
The Masila area is located in the Hadhramaut region in east central Yemen. Oil was first discovered in the area in late 1990 with commerciality being declared in late 1991. Oil production began in July 1993. By the end of December 1999, the daily production rate was set at 210,000 stock tank barrels/day (STB/D) of very low gas–oil ratio (GOR) oil under partial to full water drive. About 90% of the reserves are found in the Lower Qishn Clastics Member of the Qishn Formation. This paper focuses on the detailed 3D geological modeling of the Lower Cretaceous Sequence conducted through an integrated study. There are three critical areas in the process of modeling reservoirs that involve geological and geophysical modeling, reservoir characterization, and reservoir flow modeling. This paper presents methodologies found useful during the modeling of these reservoirs including field case histories for the Lower Cretaceous reservoir in the Masila oilfield.  相似文献   
592.
Soil texture is a key variable that reflect a number of soil properties such as soil permeability, water holding capacity, nutrient storage and availability, and soil erosion. The main objective of this study was to produce the kriged maps of soils of the Shahrekord region, central Iran. One hundred four soil samples were collected on a 375-m2 sampling grid from the depths of 0–30, 30–60, and 60–100 centimeter, and their particle sizes were determined using hydrometer method. The results showed a moderately spatial correlation in the soil particles among sampling soil layers and across the study area. Moreover, increasing clay and therewith observation of heavier soil textures is evident from surface to subsurface layers of the soils in the studied area due to rainfall and/or irrigation agriculture. These findings indicated that study of the soil texture variation with depth can be used as a clue for site-specific management and precision agriculture. Moreover, we suggest further analysis by using other data layers like topographical parameters, land use, parent material, soil erosion, and any other information which might influence the spatial distribution of soil texture.  相似文献   
593.
The amount of methane that vent from landfills is dependent on the physical, chemical and biological components of the soil cover. Especially moisture content and temperature of the soil are known as the major controlling factors. In situ moisture content measurement is very critical because the moisture content of the soil continuously changes within minutes to hours as a result of change in temperature. The presented study used time domain reflectometry to measure in situ moisture content and analyzed moisture content, temperature and methane data of the landfill soil cover in a quantitative manner. Geotechnical factors including soil grain size and uniformity coefficient of the soil were analyzed and their influence on moisture content and methane emission was examined. The authors used kriging and polynomial regression methods to characterize the spatial distribution of moisture content and methane emission. Methane emission showed good temporal correlation with soil temperature, however, no significant relationship between moisture content and methane emission was observed. Spatial distribution of soil attributes was also analyzed to examine its effect on those variables. The spatial pattern of moisture content was quite similar to that of uniformity coefficient, C u and that of clay content of the soil but strongly contrasted to that of methane emission.  相似文献   
594.
Abstract: Phosphorite deposits in Egypt, known as the Duwi Formation, are a part of the Middle East to North Africa phospho‐genic province of late Cretaceous to Paleogene age. Based on the petrographical observation, the phosphatic grains in the phosphorites are classified into phosphatic mudclasts and phosphatic bioclasts. Both of them are composed of francolite. The structural CO2 contents in the francolite range from 3.3 to 7.2 % with an average of 5.3 %. Results indicated that the substitution with CO32‐ of PO43‐ in the francolite decreases the unit cell volume and a‐cell dimension, and increases the c/a ratio. Effect is more obvious in the a‐cell dimension; therefore, it is more significant in distinction between the different apatite species. Lack of covariance between structural CO2 contents in the francolite and the carbonate minerals contents may render the supposition that the phosphorites formed as a result of replacement of preexisting calcareous sediments is doubtful. Similarity in CO2 content in both weathered and fresh samples indicates that the structural CO2 content in the phosphorites is not affected by weathering, and reflects the conditions and CO2 concentration of the depositional environment. Similarity in mineralogy and CO2 contents in the different phosphatic grains and higher CO2 content in the Egyptian phosphorites compared with the authigenic phosphates of Peru margin, which formed by the same mechanism as the Duwi phosphorites, suggest that the phosphatic grains in the Duwi Formation were francolitized during diagenesis by introducing CO2 from the surrounding pore water and diagenesis took place at an elevated temperature. Scattered values of structural CO2 contents suggest the reworking origin of the phosphatic grains in the late Cretaceous phosphorites in Egypt.  相似文献   
595.
The Iberian Massif poses a problem of relationships between its northwestern and southern parts. Suture terranes (ophiolites and high-pressure rocks) crop out in NW Iberia but only as allochthonous units, unconnected from their root zone. Sutures cropping out in SW Iberia are discussed in order to relate them to the unknown root of the NW Iberia allochthons. On the other hand, the Moroccan Variscides are very briefly presented with a view to propose their correlation with the Iberian zones. Particularly important is the transition from the Variscides to the Paleoproterozoic basement in Morocco, which is a key argument for palaeogeographic reconstructions.  相似文献   
596.
Groundwater is the most economic natural source of drinking in urban and rural areas which are degraded due to high population growth and increased industrial development. We applied a GIS-based DRASTIC model in a populated urban area of Pakistan (Peshawar) to assess groundwater vulnerability to pollution. Six input parameters—depth to phreatic/groundwater level, groundwater recharge, aquifer material, soil type, slope, and hydraulic conductivity—were used in the model to generate the groundwater vulnerable zones. Each parameter was divided into different ranges or media types, and ratings R?=?1?–?10 were assigned to each factor where 1 represented the very low impact on pollution potential and 10 represented very high impact. Weight multipliers W?=?1?–?5 were also used to balance and enhance the importance of each factor. The DRASTIC model scores obtained varied from 47 to 147, which were divided into three different zones: low, moderate, and high vulnerability to pollution. The final results indicate that about 31.22, 39.50, and 29.27% of the total area are under low, moderate, and high vulnerable zones, respectively. Our method presents a very simple and robust way to assess groundwater vulnerability to pollution and helps the decision-makers to select appropriate landfill sites for waste disposals, and manage groundwater pollution problems efficiently.  相似文献   
597.
The Central West Bank aquifer (CWB) is one of the most important resources of fresh groundwater of Palestine. The geology of the area consists mainly of karstic and permeable limestones and dolomites interbedded with argillaceous beds of late Albian–Turonian age. Exploitation of the CWB aquifer, combined with lack of information required to understand the groundwater pattern, represents a challenge for reservoir management. The present work reports hydrogeochemistry, microbiology and environmental isotope data from spring water samples, which were utilized to understand recharge mechanisms, geochemical evolution and renewability of groundwater in CWB aquifer. Besides the major chemical compositions, ionic ratios were used to delineate mineral-solution reactions and weathering processes. Interpretation of chemical data suggests that the chemical evolution of groundwater is primarily controlled by (1) water–rock interactions, involving dissolution of carbonate minerals (calcite and dolomite), and (2) cation exchange processes. The measured equation of the local meteoric water line is δD?=?5.8 δ18O?+?9.9. Stable isotopes show that precipitation is the source of recharge to the groundwater system. The evaporation line has a linear increasing trend from south to north direction in the study area. All analyzed spring waters are suitable for irrigation, but not for drinking purposes. The results from this study can serve as a basis for decision-makers and stakeholders, with the intention to increase the understanding of sustainable management of the CWBs.  相似文献   
598.
Our aim was to develop a remote sensing-based forest fire danger forecasting system (FFDFS) and its implementation in forecasting 2011 fire season in the Canadian province of Alberta. The FFDFS used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived 8-day composites of surface temperature, normalized multiband drought index, and normalized difference vegetation index as input variables. In order to eliminate the data gaps in the input variables, we propose a gap-filling technique by considering both of the spatial and temporal dimensions. These input variables were calculated during the i period and then integrated to forecast the fire danger conditions into four categories (i.e., very high, high, moderate, and low) during the i + 1 period. It was observed that 98.19 % of the fire fell under “very high” to “moderate” danger classes. The performance of this system was also demonstrated its ability to forecast the worst fires occurred in Slave Lake and Fort McMurray region during mid-May 2011. For example, 100 and 94.0 % of the fire spots fell under “very high” to “high” danger categories for Slave Lake and Fort McMurray regions, respectively.  相似文献   
599.
600.
Sediment samples tend to dry out during storage and are, therefore, stored refrigerated at about 4°C after wrapping in plastic foil. During XRF core scanning however, the samples must be taken out of their cover, increasing the risk of drying and formation of desiccation cracks on the surface. Because scan times can often amount to several hours and at highest resolution may take over a day to complete, the core will progressively dry out during scanning. With this study we aim to increase our understanding of how this slow drying of the samples during scanning and storage influences the XRF signal because of changes in water content, sediment surface topography, and the development of small, but slowly expanding cracks in the sediment core. Results show that the desiccation of samples during scanning and storage influence the XRF measurements in several ways. Most importantly, slow desiccation of the cores results in both a general lowering of the sample surface, and a shortening of the core due to shrinkage. Larger distance between sediment surface and detector leads to increased noise levels and poor reproducibility for many elements, while the shrinking of cores may shift individual data points between runs, resulting in poor reproducibility and offsets between datasets obtained at different times. Moreover, the loss of light elements, such as hydrogen and oxygen, can influence the matrix effect, especially for organic-rich sediment. Because the XRF signals of individual elements are affected to different degrees, these changes may induce artificial shifts and biases in many elemental ratios commonly used for paleoenvironmental reconstruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号