首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3085篇
  免费   115篇
  国内免费   76篇
测绘学   91篇
大气科学   273篇
地球物理   689篇
地质学   1015篇
海洋学   276篇
天文学   698篇
综合类   29篇
自然地理   205篇
  2022年   16篇
  2021年   37篇
  2020年   56篇
  2019年   43篇
  2018年   79篇
  2017年   82篇
  2016年   103篇
  2015年   73篇
  2014年   81篇
  2013年   169篇
  2012年   106篇
  2011年   126篇
  2010年   132篇
  2009年   139篇
  2008年   145篇
  2007年   126篇
  2006年   114篇
  2005年   115篇
  2004年   127篇
  2003年   120篇
  2002年   156篇
  2001年   151篇
  2000年   98篇
  1999年   72篇
  1998年   53篇
  1997年   49篇
  1996年   41篇
  1995年   46篇
  1994年   46篇
  1993年   31篇
  1992年   21篇
  1991年   31篇
  1990年   30篇
  1989年   22篇
  1988年   15篇
  1987年   18篇
  1986年   23篇
  1985年   29篇
  1984年   35篇
  1983年   26篇
  1982年   24篇
  1981年   23篇
  1980年   17篇
  1978年   23篇
  1976年   20篇
  1975年   21篇
  1974年   26篇
  1972年   21篇
  1971年   16篇
  1970年   13篇
排序方式: 共有3276条查询结果,搜索用时 819 毫秒
201.
202.
Simultaneous measurements of soluble and insoluble impurities were made on the 950 m deep Vostok (78°30′S, 106°54′E, 3420 m a.s.l.) ice core, spanning roughly 50000 yr, using various analytical techniques. We observed higher continental (×37) and marine (×5.1) inputs during the last glacial age than during the Holocene stage. A study of microparticle compositions and of volcanic indicators (Zn, H2SO4), shows that the high observed crustal input is not due to enhanced volcanism, but is rather of continental eolian origin. For the first time, the ionic balance along a deep ice core is established, mainly used in discussing the evolution of the Cl to Na ratio over central East Antarctica with changing climatic conditions: the presence of relatively high amounts of Na2SO4 in the marine aerosol at the Vostok site during the Holocene is demonstrated. Comparison with the Dome C (74°39′S, 124°10′E, 3040 m a.s.l.) results confirms the chronology of the major events: (i) maximum terrestrial input around the last glacial maximum (~18 ka BP); (ii) end of the high continental flux over Antarctica near 13 ka BP; (iii) marine input varying in an opposing manner to isotopic fluctuations with rather high concentrations beginning to decrease when isotopic values increase and reaching Holocene values at the end of the transition between cold and warmer climate conditions. Detailed comparison with results provided by deep ice cores from other sites which are probably more influenced by oceanic air masses seems to indicate that most of the aerosol reaching central East Antarctica travel over large distance probably at rather high altitude through the troposphere. We can consider that central East Antarctica is well representative of the upper part of the troposphere (higher than i.e., 3000 m) and should, therefore, provide valuable data for global and Antarctic paleoclimatological models.  相似文献   
203.
金坛市拥有丰富的地质遗迹资源,包括地层剖面、古生物化石产地与古文化遗址、地质构造形迹、地质地貌景观、水体景观、岩溶洞穴、矿产产地与观赏石景点8大类。对其应遵循原态保护的原则,以茅山风景名胜区为重点,因地制宜地开展有特色的大众地学科普旅游,为地方经济和社会发展作出贡献。  相似文献   
204.
We introduce a new computational model designed to simulate and investigate reach-scale alluvial dynamics within a landscape evolution model. The model is based on the cellular automaton concept, whereby the continued iteration of a series of local process ‘rules’ governs the behaviour of the entire system. The model is a modified version of the CAESAR landscape evolution model, which applies a suite of physically based rules to simulate the entrainment, transport and deposition of sediments. The CAESAR model has been altered to improve the representation of hydraulic and geomorphic processes in an alluvial environment. In-channel and overbank flow, sediment entrainment and deposition, suspended load and bed load transport, lateral erosion and bank failure have all been represented as local cellular automaton rules. Although these rules are relatively simple and straightforward, their combined and repeatedly iterated effect is such that complex, non-linear geomorphological response can be simulated within the model. Examples of such larger-scale, emergent responses include channel incision and aggradation, terrace formation, channel migration and river meandering, formation of meander cutoffs, and transitions between braided and single-thread channel patterns. In the current study, the model is illustrated on a reach of the River Teifi, near Lampeter, Wales, UK.  相似文献   
205.
Slurry walls are non-structural barriers that are constructed underground to impede groundwater flow or manage groundwater control problems. The study area is in the Piemonte plain (Italy), close to the River Po. Quarrying works carried out below the piezometric surface created two big quarry lakes. The local groundwater system is characterized by a lower semi-confined aquifer, which is overlain by a semi-permeable bed of clayey peat (aquitard) and an upper unconfined aquifer. Locally, the peat fades away and the granulometry of this horizon becomes silty sandy. A planned enlargement of the quarry will increase the size and depth of the quarry lakes. So the aquitard bed between the two aquifers will be damaged, creating a mixing rate of groundwater. Such a procedure would not be compatible with the presence of two municipal wells upstream from the quarries. Consequently, the installation of a vertical diaphragm (slurry wall) is recommended to separate the aquifers and to act as a filter for the groundwater flowing from the unconfined to the semi-confined aquifer. To predict the consequences caused by the installation of the vertical diaphragm separating the unconfined aquifer and the semi-confined one, a specifically adjusted finite-difference model was used. The model showed a maximum rising of the water table equal to 12 cm, just upstream of the diaphragm and for a distance of about 100 m, and a maximum lowering of 2 cm just downstream of the diaphragm. However, the slurry wall would not cause any change in the piezometric head in the area where there are municipal wells and, hence, will not have any negative effect on the functionality of the municipal wells. Moreover, the migration of water from the unconfined aquifer through the vertical diaphragm will stimulate a series of attenuation and auto-depuration processes of eventual contaminants. These processes are due to the higher crossing time that the groundwater flow takes to go through the vertical barrier (t a = 96.5 days, whereas for the horizontal semi-permeable layer t a = 9.6 days). So, the vertical diaphragm can be a resolutive element, representing a mediation and separation factor between the unconfined and the semi-confined aquifers along the border of the quarrying areas, and a protective barrier for the water quality of the quarry lake and the semi-confined aquifer.  相似文献   
206.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   
207.
The effects of climate change on the groundwater systems in the Grote-Nete catchment, Belgium, covering an area of 525 km2, is modeled using wet (greenhouse), cold or NATCC (North Atlantic Thermohaline Circulation Change) and dry climate scenarios. Low, central and high estimates of temperature changes are adopted for wet scenarios. Seasonal and annual water balance components including groundwater recharge are simulated using the WetSpass model, while mean annual groundwater elevations and discharge are simulated with a steady-state MODFLOW groundwater model. WetSpass results for the wet scenarios show that wet winters and drier summers are expected relative to the present situation. MODFLOW results for wet high scenario show groundwater levels increase by as much as 79 cm, which could affect the distribution and species richness of meadows. Results obtained for cold scenarios depict drier winters and wetter summers relative to the present. The dry scenarios predict dry conditions for the whole year. There is no recharge during the summer, which is mainly attributed to high evapotranspiration rates by forests and low precipitation. Average annual groundwater levels drop by 0.5 m, with maximum of 3.1 m on the eastern part of the Campine Plateau. This could endanger aquatic ecosystem, shrubs, and crop production.  相似文献   
208.
The deformation at the core–mantle boundary produced by the 2004 Sumatra earthquake is investigated by means of a semi-analytic theoretical model of global coseismic and postseismic deformation, predicting a millimetric coseismic perturbation over a large portion of the core–mantle boundary. Spectral features of such deformations are analysed and discussed. The time-dependent postseismic evolution of the elliptical part of the gravity field ( J 2) is also computed for different asthenosphere viscosity models. Our results show that, for asthenospheric viscosities smaller than 1018 Pa s, the postseismic J 2 variation in the next years is expected to leave a detectable signal in geodetic observations.  相似文献   
209.
Many studies focus on the effects of vegetation cover on water erosion rates, whereas little attention has been paid to the effects of the below ground biomass. Recent research indicates that roots can reduce concentrated flow erosion rates significantly. In order to predict this root effect more accurately, this experimental study aims at gaining more insight into the importance of root architecture, soil and flow characteristics to the erosion‐reducing potential of roots during concentrated flow. Treatments were (1) bare, (2) grass (representing a fine‐branched root system), (3) carrots (representing a tap root system) and (4) carrots and fine‐branched weeds (representing both tap and fine‐branched roots). The soil types tested were a sandy loam and a silt loam. For each treatment, root density, root length density and mean root diameter (D) were assessed. Relative soil detachment rates and mean bottom flow shear stress were calculated. The results indicate that tap roots reduce the erosion rates to a lesser extent compared with fine‐branched roots. Different relationships linking relative soil detachment rate with root density could be established for different root diameter classes. Carrots with very fine roots (D < 5 mm) show a similar negative exponential relationship between root density and relative soil detachment rate to grass roots. With increasing root diameter (5 < D < 15 mm) the erosion‐reducing effect of carrot type roots becomes less pronounced. Additionally, an equation estimating the erosion‐reducing potential of root systems containing both tap roots and fine‐branched roots could be established. Moreover, the erosion‐reducing potential of grass roots is less pronounced for a sandy loam soil compared with a silt loam soil and a larger erosion‐reducing potential for both grass and carrot roots was found for initially wet soils. For carrots grown on a sandy loam soil, the erosion‐reducing effect of roots decreases with increasing flow shear stress. For grasses, grown on both soil types, no significant differences could be found according to flow shear stress. The erosion‐reducing effect of roots during concentrated flow is much more pronounced than suggested in previous studies dealing with interrill and rill erosion. Root density and root diameter explain the observed erosion rates during concentrated flow well for the different soil types tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
210.
The use of energy dissipation systems for the seismic control of steel structures represents a valid alternative to conventional seismic design methods. The seismic devices currently employed are mostly based on the metallic yielding technology due to the large feasibility and efficiency they can provide. Within this context, in the current paper an innovative solution based on the adoption of low‐yield‐strength pure aluminium shear panels (SPs) for seismic protection of steel moment‐resisting frames is proposed and investigated. In order to prove the effectiveness of the system, a wide numerical study based on both static and dynamic non‐linear analyses has been carried out, considering a number of different frame‐to‐shear panel combinations, aiming at assessing the effect of the main influential parameters on the seismic response of the structure. The obtained results show that the contribution provided by aluminium SPs is rather significant, allowing a remarkable improvement of the seismic performance of the structure in terms of stiffness, strength and ductility, with the possibility to strongly limit the damage occurring in the members of moment‐resisting frames. In particular, it is clearly emphasized that the stiffening effect provided by SPs allows a more rational design procedure to be adopted, since the serviceability limit state check does not lead to unavoidable and uneconomical increase of the size of main structural members. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号