首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   9篇
  国内免费   5篇
测绘学   3篇
大气科学   10篇
地球物理   71篇
地质学   152篇
海洋学   35篇
天文学   33篇
自然地理   30篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   13篇
  2013年   17篇
  2012年   28篇
  2011年   21篇
  2010年   16篇
  2009年   21篇
  2008年   20篇
  2007年   22篇
  2006年   10篇
  2005年   6篇
  2004年   15篇
  2003年   9篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
81.
82.
A subsurface evacuation model for submarine slope failure   总被引:1,自引:0,他引:1  
Analysis of three-dimensional (3D) seismic reflection data from the Norwegian continental margin provides an insight into an unusual, buried submarine slope failure, which occurred adjacent to the later Holocene-age Storegga Slide. The identified failure, informally named the 'South Vøring Slide' (SVS), occurs in fine-grained hemipelagic and contourite sediments on a slope of 0.5°, and is characterised by a deformed seismic facies unit consisting of closely spaced pyramidal blocks and ridges bound by small normal faults striking perpendicular to the slope. The SVS contrasts with other previously described submarine slope failures in that it cannot be explained by a retrogressive model. The defining characteristic is the high relative volume loss. The area affected by sliding has thinned by some 40%, seen in combination with very modest extension in the translation direction, with line length balancing yielding an extension value of only 4.5%. The volume loss is explained by the mobilisation of an approximately 40 m thick interval at the lower part of the unit and its removal from beneath a thin overburden, which subsequently underwent extensional fragmentation. Evidence for the mobilisation of a thick fine-grained interval in the development of a submarine slope failure from a continental margin setting may have implications for the origins of other large-scale slope failures on the Norwegian margin and other glacially influenced margins worldwide.  相似文献   
83.
We retrieved a lake sediment record from an oligosaline, meromictic lake in southwest Greenland. The record spans the last 8,200 cal. years and was radiocarbon dated and analysed for macroscopic remains of plants and animals. The record extends the known history of several invertebrate species back in time, and provides minimum ages for their immigration to Greenland after the last deglaciation. Shells of the ostracod Ilyocypris bradyi were found in sediments dated to the time interval c. 7,000–6,500 cal. years BP. Shells of this species were found previously in a nearby oligosaline lake, where its occurrence was dated to about the same short time interval. The species is a thermophilous, non-arctic taxon that is absent from the present day Greenland fauna, and we suggest that its former occurrence in west Greenland marks the peak of the Holocene thermal maximum. This is in agreement with other records from Greenland.  相似文献   
84.
The northwest Hatton Bank margin is an ideal locality to demonstrate the interaction between bottom currents and slope configuration in controlling the distribution and morphology of bottom current deposits. The slope area investigated is isolated from any major terrigenous sediment supply and at present is influenced by the Deep Northern Boundary Current (DNBC). Swath bathymetry and high resolution acoustic data allow us to evaluate both local and regional controls on slope sedimentation and the possible mechanisms for bottom-current velocity variability across a slope setting within the NW European continental margin. The slope exhibits sculpting by bottom currents that flow in a predominantly southwest to northeast direction, and is only locally modified by slope failures. Positive relief features such as the Endymion Spur play an important role in constraining and accelerating bottom-current flow and, consequently, in redistributing sediment along the margin. We demonstrate that the size, morphology and distribution of bottom-current deposits along the slope vary as a function of the interaction between bottom currents, regional slope orientation and local seafloor topography.  相似文献   
85.
Continental flood basalts, derived from mantle plumes that rise from the convecting mantle and possibly as deep as the core–mantle boundary, are major hosts for world-class Ni–Cu–PGE ore deposits. Each plume may have a complex history and heterogeneous composition. Therefore, some plumes may be predisposed to be favourable for large-scale Ni–PGE mineralisation (“fertile”).Geochemical data from 10 large igneous provinces (LIPs) have been collected from the literature to search for chemical signatures favourable for Ni–PGE mineralisation. The provinces include Deccan, Kerguelen, Ontong Java, Paraná, Ferrar, Karoo, Emeishan, Siberia, Midcontinent and Bushveld. Among these LIPs, Bushveld, Siberia, Midcontinent, Emei Mt and Karoo are “fertile”, hosting magmatic ore deposits or mineralisation of various type, size and grade. They most commonly intruded through, or on the edges of, Archaean–Paleoproterozoic cratonic blocks. In contrast, the “barren” LIPs have erupted through both continental and oceanic crustal terranes of various ages.Radiogenic isotopic signatures indicate that almost all parental LIP magmas are generated from deep-seated mantle plumes, and not from the more widespread depleted asthenospheric mantle source: this confirms generally accepted plume models. However, several important geochemical signatures of LIPs have been identified in this study that can discriminate between those that are “fertile” or “barren” in terms of their Ni–PGE potential.The fertile LIPs generally contain a relatively high proportion of primitive melts that are high in MgO and Ni, low in Al2O3 and Na2O, and are highly enriched in most of the strongly incompatible elements such as K, P, Ba, Sr, Pb, Th, Nb, and LREE. They have relatively high Os contents (≥ 0.03 to 10 ppb) and low Re/Os (< 10). The fertile LIP basalts display trends of Sr–Nd–Pb isotopic variation intermediate between the depleted plume and an EM1-type mantle composition (and thus could represent a mixing of these two source types), and have elevated Ba/Th, Ba/Nb and K/Ti ratios. These elemental and isotopic signatures suggest that interaction between plume-related magmas and ancient cratonic lithospheric mantle with pre-existing Ni- and PGE-rich sulfide phases may have contributed significantly to the PGE and Ni budget of the fertile flood basalts and eventually to the mineralisation. This observation is consistent with the location of fertile LIPs adjacent to deep old lithospheric roots (as inferred from tectonic environment and also seen in global tomographic images) and has predictive implications for exploration models.Barren LIPs contain fewer high-MgO lavas. The barren LIP lavas in general have low Os contents (mostly ≤ 0.02 ppb) with high Re/Os (10–≥ 200). They show isotopic variations between plume and EM2 geochemical signatures and have high Rb/Ba ratios. These signatures may indicate involvement of deep recycled material in the mantle sources or crustal contamination for barren LIPs, but low degrees of interaction with old lithospheric-type roots.  相似文献   
86.
Podiform chromite deposits occur in the mantle sequences of many ophiolites that were formed in supra-subduction zone (SSZ) settings. We have measured the Re-Os isotopic compositions of the major chromite deposits and associated mantle peridotites of the Dongqiao Ophiolite in the Bangong-Nujiang suture, Tibet, to investigate the petrogenesis of these rocks and their genetic relationships.The 187Os/188Os ratios of the chromite separates define a narrow range from 0.12318 to 0.12354, less variable than those of the associated peridotites. Previously-reported 187Os/188Os ratios of the Os-rich alloys enclosed in the chromitites define two clusters: 0.12645 ± 0.00004 (2 s; n = 145) and 0.12003 to 0.12194. The ultra-depleted dunites have much lower 187Os/188Os (0.11754, 0.11815), and the harzburgites show a wider range from 0.12107 to 0.12612. The average isotopic composition of the chromitites (187Os/188Os: 0.12337 ± 0.00001) is low compared with the carbonaceous chondrite value (187Os/188Os: 0.1260 ± 0.0013) and lower than the average value measured for podiform chromitites worldwide (0.12809 ± 0.00085). In contrast, the basalts have higher 187Os/188Os, ranging from 0.20414 to 0.38067, while the plagioclase-bearing harzburgite and cumulates show intermediate values of 187Os/188Os (0.12979 ~ 0.14206). Correspondingly, the basalts have the highest 187Re/188Os ratios, up to 45.4 ± 3.2, and the chromites have the lowest 187Re/188Os ratios, down to 0.00113 ± 0.00008. We suggest that melts/fluids, derived from the subducting slab, triggered partial melting in the overlying mantle wedge and added significant amounts of radiogenic Os to the peridotites. Mass-balance calculations indicate that a melt/mantle ratio of approximately 15:1 (melt: 187Re/188Os: 45.4, 187Os/188Os: 0.34484; mantle peridotite: 187Re/188Os: 0.0029, 187Os/188Os: 0.11754) is necessary to increase the Os isotopic composition of the chromitite deposits to its observed average value. This value implies a surprisingly low average melt/mantle ratio during the formation of the chromitite deposits. The percolating melts probably were of variable isotopic composition. However, in the chromitite pods the Os from many melts was pooled and homogenized, which is why the chromitite deposits show such a small variation in their Os isotopic composition. The results of this study suggest that the 187Os/188Os ratios of chromitites may not be representative of the DMM, but only reflect an upper limit. Importantly, the Os-isotope compositions of chromitites strongly suggest that such deposits can be formed by melt/mantle mixing processes.  相似文献   
87.
Through the delivery of water in snowmelt, climate should govern the rate and extent of saprolite formation in snow‐dominated mountain watersheds, yet the mechanisms by which water flows deeply into regolith are largely unexplored. In this study we link rainfall, snow depth, and water content data from both soil and shallow saprolite to document vadose zone dynamics in two montane catchments over 2 years. Measurements of snow pack thickness and soil moisture reveal strong contrasts between north‐ and south‐facing slopes in both the timing of meltwater delivery and the duration of significant soil wetting in the shallow vadose zone. Despite similar magnitudes of snowmelt recharge, north‐facing slopes have higher sustained soil moisture compared to south‐facing slopes. To help interpret these observations, we use a 2D numerical model of vadose zone dynamics to calculate the expected space–time moisture patterns on an idealized hillslope under two wetting scenarios: a single sustained recharge pulse versus a set of short pulses. The model predicts that the duration of the recharge event exerts a stronger control on the depth and residence time of water in the upper unsaturated zone than the magnitude of the recharge event. Model calculations also imply that water should move more slowly through the subsurface and downward water flux should be substantially reduced when water is applied in several pulses rather than in one sustained event. The results suggest that thicker soil and more deeply weathered rock on north‐facing slopes may reflect greater water supply to the deep subsurface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
88.
New trace-element data of rutile in kimberlite-borne ~1.85 Ga eclogite and pyroxenite xenoliths from the central Slave craton, as well as ~110 Ma MARID xenoliths from the Kaapvaal craton, provide constraints on the origins of lithospheric and sublithospheric mantle variability in high field strength element ratios. Rutiles in eclogites and pyroxenites have Zr/Hf ranging from 20 to 62 and Nb/Ta ranging from 10 to 40. Rutiles in MARID xenoliths have Zr/Hf from 24 to 33 and Nb/Ta from 10 to 41. Calculated whole-rock Zr/Hf is suprachondritic for eclogites with suggested gabbroic protoliths and subchondritic for boninite-like eclogites; the latter is consistent with cpx-controlled depletion in the protolith source. Within each eclogite type, positive correlations of Zr/Hf with La/Lu and negative correlations with Lu/Hf likely reflect fractionation of cpx and/or plagioclase during crystallisation of the protoliths. Zr/Hf–Nb/Ta relationships of some MARID-type rocks, which are products of lithospheric mantle metasomatism, and eclogite xenoliths plot on a silicate differentiation trend, whereas other samples have higher Nb/Ta at a given Zr/Hf. Fractionation of a few percent rutile from an HFSE-rich mafic melt can generate a trend towards strongly increased Nb/Ta at minimally changed Zr/Hf in the residual melt. Superposition of rutile fractionation on the effects of silicate differentiation, which fractionates Zr/Hf more strongly than Nb/Ta, can explain the Zr/Hf–Nb/Ta relationships of most eclogites from the central Slave craton as well as those of MARID rocks, metasomatised peridotites and group II kimberlites. By contrast, Zr/Hf–Nb/Ta relationships suggest that Group I kimberlites are mixtures between depleted peridotite and carbonatite. Thus, high Nb/Ta is a signature of lithospheric processes and may not be important in deeply subducted eclogites that bypass extended residence in the lithosphere. Conversely, considerable primary Zr/Hf variability was inherited by the eclogites, which is indicative of the compositional diversity of ancient subducted oceanic crust, which is expected to have generated substantial heterogeneity in sublithospheric basalt sources.  相似文献   
89.
We report on the results of a time-series photometric survey of NGC 2362, carried out using the CTIO 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 271 candidate cluster members over the mass range  0.1 ≲ M /M≲ 1.2  . The rotation period distributions show a clear mass-dependent morphology, qualitatively similar to that in NGC 2264, as would be expected from the age of this cluster. Using models of angular momentum evolution, we show that angular momentum losses over the ∼1–5 Myr age range appear to be needed in order to reproduce the evolution of the slowest rotators in the sample from the ONC to NGC 2362, as found by many previous studies. By incorporating Spitzer IRAC mid-infrared (mid-IR) measurements, we found that three to four objects showing mid-IR excesses indicative of the presence of circumstellar discs were all slow rotators, as would be expected in the disc regulation paradigm for early pre-main-sequence angular momentum evolution, but this result is not statistically significant at present, given the extremely limited sample size.  相似文献   
90.
In situ LAM-ICPMS U-Pb, Hf-isotope and trace-element analyses of zircon have been used to evaluate the relative contributions of juvenile mantle and crustal sources to the intrusive rocks of the mafic to intermediate, gold-poor Tuckers Igneous Complex (TIC), and the spatially and temporally related, felsic Mount Leyshon Igneous Complex (MLIC), which hosts a gold-rich porphyry system.

The TIC intrusions range in age from 304.2 ± 9.1 Ma to 288.5 ± 6.4 Ma, and the MLIC intrusions from 291.0 ± 4.8 Ma to 288 ± 6 Ma. Cross-cutting relationships define the intrusion sequence from oldest to youngest; Diorite, Monzodiorite, Mafic Granodiorite and Biotite Microgranite within the TIC; Early Dyke, Southern Porphyry and Late Dyke within the MLIC.

Zircons from the earliest rock type within each complex have a wide range in Hf (5.2 to 14.8 for the TIC Diorite, 2.0 to 12.4 for the MLIC Early Dykes) suggesting the mixing of juvenile and crustal magmas. This interpretation is supported by trace-element data that show the presence of two distinct zircon populations in the MLIC Early Dyke. The later intrusive rocks have narrower ranges in Hf (typically < 4 Hf units) and trace-element patterns of zircon. This homogeneity suggests derivation from magmas produced by further mixing and fractional crystallisation of the TIC Diorite and the MLIC Early Dyke magmas respectively. A greater crustal contribution to the gold-rich MLIC is inferred from the range of median Hf (3.2 to 4.5 for the MLIC, 5.4 to 8.7 for the TIC). We suggest that the MLIC was derived by melting of more felsic crustal rocks, and with less input from juvenile mantle, then the TIC; it was not derived by fractional crystallisation of an intermediate to mafic TIC-like magma. Modelling of Hf isotope data yields a mean model age of 1040 ± 10 Ma (at 176Lu/177Hf = 0.015) for the crustal component in both complexes.

Gold was precipitated in the MLIC Breccia during the emplacement of the Late Dykes. The isotopically homogenous nature of the Late Dykes suggests that no additional juvenile-mantle input was involved at the mineralisation stage. This supports a model in which gold and other metals were indigenous to the Late Dykes magma and were concentrated by magma differentiation and fluid-evolution processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号