首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6813篇
  免费   1266篇
  国内免费   1605篇
测绘学   312篇
大气科学   1402篇
地球物理   1806篇
地质学   3287篇
海洋学   1029篇
天文学   220篇
综合类   840篇
自然地理   788篇
  2024年   23篇
  2023年   108篇
  2022年   313篇
  2021年   346篇
  2020年   323篇
  2019年   295篇
  2018年   359篇
  2017年   349篇
  2016年   414篇
  2015年   305篇
  2014年   405篇
  2013年   370篇
  2012年   360篇
  2011年   386篇
  2010年   414篇
  2009年   369篇
  2008年   324篇
  2007年   327篇
  2006年   282篇
  2005年   223篇
  2004年   198篇
  2003年   211篇
  2002年   199篇
  2001年   186篇
  2000年   209篇
  1999年   314篇
  1998年   291篇
  1997年   276篇
  1996年   229篇
  1995年   240篇
  1994年   211篇
  1993年   170篇
  1992年   151篇
  1991年   92篇
  1990年   91篇
  1989年   72篇
  1988年   50篇
  1987年   37篇
  1986年   22篇
  1985年   25篇
  1984年   25篇
  1983年   15篇
  1982年   18篇
  1981年   17篇
  1980年   12篇
  1979年   12篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1958年   4篇
排序方式: 共有9684条查询结果,搜索用时 15 毫秒
31.
着重介绍了CuInSe2的结构和光、电学特性;讨论了多各上薄膜沉积技术;评价了主要的合成装置及其作途;综述了制备CuInSe2太阳电池器件的工艺和材料,提出了一种能成功地生产大面积太阳电池薄膜的经济有铲的沉积技术。  相似文献   
32.
山东牟平邓格庄金矿的地球化学特征及成因   总被引:3,自引:1,他引:3  
邓格庄大型石英脉型金矿,分布于燕山期昆嵛山花岗岩体内金牛山断裂带次级断裂中。成矿年龄118×106a,它比容矿岩体冷凝至350℃时还晚12×106a。成矿深度小于1km(约0.75km),而容矿岩体的定位深度大于13km,它们的定位深度差大于12km。成矿流体来自地壳深部,通过水-岩反应又从容矿岩体中萃取一部分金。故此金矿不是传统意义的岩浆期后热液矿床  相似文献   
33.
构造层次与大陆壳动力学机制转变关系   总被引:6,自引:1,他引:6  
针对构造层次研究现状和存在的问题,把大陆壳划分为深部,中部,浅部和浅-表部四个构造层次。依据各自所处特定的构造位置、组成构造岩类型、形成的制约因素和地质时代等方面的区别,各构造层次分别是壳-幔间滑动,大陆张裂、隆-滑构造和变质核杂岩构造等多种大陆壳动力学机制转变过程中的产物。构造层次与大陆壳动力学机制转变关系的确定,更有利于古老板构造连续性、整体性的研究以及多期、多层次、多旋回大陆地壳演化模式的建  相似文献   
34.
毛洋头铀(银,钼)矿床同位素地球化学研究   总被引:1,自引:0,他引:1  
毛洋头铀矿床的(H、O)同位素特征表明:早期矿化热液主要为岩浆水,而晚期矿化热液则主要为大气降水。铅同位素组成反映该矿床中铅为不同来源的混合铅。C、S同位素组成变化范围小,且与火成岩的C、S同位素组成相当,说明矿床中的碳和硫主要淋取于火成围岩或源于地壳深部。  相似文献   
35.
In situ seismic attenuationQ−1logs are derived from borehole velocity profiles and reveal sharp boundaries between morphologies of the extrusive volcanic layers in intermediate- and slow-spreading oceanic crust.Q−1logs are calculated from the scattering attenuation associated with vertical velocity heterogeneity in Ocean Drilling Program Holes 504B and 896A and in Hole 395A, located in 5.9–7.3 Ma crust on the Pacific and Atlantic plates, respectively. Our results strongly tie crustal properties to seismic measurables and observed geological structures: we find that the scattering attenuation can be used to identify the extrusive volcanic sequence because it is closely related to changes in the degree of vertical heterogeneity. We interpret a distinct decrease in the Q−1log at the transition below the extrusive volcanic layer to correspond with the seismic layer 2A/2B boundary. The boundary is located at 465 m depth below the sea floor in both Hole 395A and 504B, although this is likely to be a coincidence of the sediment thickness at these sites. Layer 2A is estimated to be approximately 150 m thick in Hole 504B and > 300 m thick in Hole 395A. Cyclic sequences of high-porosity pillows and low-porosity massive units in the uppermost 100 m of volcanics in Hole 395A result in large velocity heterogeneities which cause > 5 times more attenuation in this layer than in Hole 504B. In Hole 896A, by contrast, fewer pillows, more massive flows, and a greater volume of carbonate veins decrease the velocity heterogeneity and attenuation significantly over only 1 km distance from Hole 504B. We conclude that the attenuation in the extrusive volcanics of the ocean crust is largely controlled by variation in local heterogeneity and morphology as well as by subsequent hydrothermal alteration. The observed differences inQ−1profiles and layer 2A thickness at these sites may be attributed to variations in the volume and duration of volcanic activity at mid-ocean spreading centers for these Pacific and Atlantic ridge segments.  相似文献   
36.
Sm/Nd isotopic age determination showed that Xiongshan dike swarm was at 585.7 Ma ± 30 Ma. The trace element geochemistry and Sr/Nd/Pb isotope gemhemistry studies indicate that the dike swarm was products of back-arc basin spreading ridge and the magma originated from the depleted mantle region which was metasomatized by LILE-rich liquids/melts derived from subduction slab. Project supported by the National Natural Science Foundation of China.  相似文献   
37.
By means of barotropic model, the characteristic and initial value problems are investigated to reveal the local two-dimensional barotropic instability of the nonuniform current to the dynamic mechanism of the formation of the Yangtze-Huaihe River severe storm in July 1991. Analytical theory and numerical experiment show that (i) the unstable developing modes are chiefly the two periods of about 44 d and 10 d, which are fundamentally consistent with that of the precipitation change of the Yangtze-Huaihe River. (ii) The growth rate of the local perturbation is dominated by the meridional wave numbern = 1–5 and zonal wave numberk = 1–12, i.e. the severe storm over the Yangtze-Huaihe River results from the interaction of the systems at different latitudes and waves of different scales, (iii) The perturbation over the Yangtze-Huaihe River possesses the property of local intensification, which slowly migrates westward over the lower and middle reaches of the Yangtze-Huaihe River. (iv) The growth rate of the instability, especially the propagation velocity of the perturbation, is sensitive to the external parameters ū and α. Project supported by the National Natural Science Foundation of China.  相似文献   
38.
Two Red Clay profiles near Xi’an and Xifeng were investigated in an attempt to determine magnetostratigraphic and palaeoclimatic records. The results show that aeolian dust accumulation and the related East Asia palaeomonsoon system had begun by 6.5 Ma, and it is deduced that the Tibetan Plateau had reached a significant elevation at that time. The late Tertiary palaeoclimatic history of the Red Clay as reflected by magnetic susceptibility is reconstructed during the period of 6.5–2.5 Ma. Stepwise increase in susceptibility of aeolian dust accumulation appears to have a close correlation to the uplift processes of the Tibetan Plateau. The remarkable increase of aeolian dust accumulation at 3.2 Ma appears to be due to the influence of global ice volume on the East Asia monsoon. Palaeomonsoon variation during the late Tertiary as recorded in the Red Clay sequences from the Chinese Loess Plateau can be regarded as the product of a number of interacting factors, such as uplift of the Tibetan Plateau, solar radiation, global ice volume, etc. Project supported by the National Natural Science Foundation of China and the Foundation of Xi’an Laboratory of Loess and Quaternary Geology, Chinese Academy of Sciences.  相似文献   
39.
通过对1992年河南登封4.7级地震的资料分析,表明拐河老井地下水位变化是区域应力场的变化效应。在时间上有连续性,在空间上和构造体系上有一定的相关性  相似文献   
40.
The Sanchazi mafic-ultramafic complex in Mianlue tectonic zone, South Qinling can be subdivided into two blocks, i.e. Sanchazi paleo-magmatic arc and Zhuangkegou paleo-oceanic crust fragment (ophiolite). The Sanchazi paleo-magmatic arc is mainly composed of andesite, basaltic and basalt-andesitic gabbro (or diorite), andesitic dyke, plagiogranite and minor ultramafic rocks, which have typical geochemical features of island arc volcanic rocks, such as high field strength element (e.g. Nb, Ti) depletions and lower Cr, Ni contents. The Light rare earth element (LREE) and K enrichments of these rocks and zircon xenocrystals of 900 Ma from plagiogranite suggest that this magmatic arc was developed on the South active continental margin of the South Qinling micro-continent. The U-Pb age of (300 ± 61)Ma for zircons from plagiogranite indicates that the Mianlue paleo-oceanic crust was probably subducted underneath the South Qinling micro-continent in Carboniferous. This is consistent with the formation time (309Ma) of the Huwan eclogite originating from oceanic subduction in Dabie Mountains, suggesting that the Mianlue paleo-ocean probably extended eastward to the Dabie Mountains in Carboniferous. The high-Mg adakitic rocks in Sanchazi paleo-magmatic arc suggest that the subducted oceanic crust was relatively young (<25Ma) and hot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号