首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   8篇
  国内免费   3篇
测绘学   4篇
大气科学   15篇
地球物理   28篇
地质学   54篇
海洋学   11篇
天文学   5篇
自然地理   13篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   13篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   1篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1989年   1篇
  1985年   1篇
  1982年   2篇
  1978年   1篇
  1921年   2篇
  1920年   1篇
排序方式: 共有130条查询结果,搜索用时 11 毫秒
51.
YAM@NAM 2007     
Delegates at the simultaneous National Astronomy Meeting, UK Solar Physics meeting and Spring MIST meeting were impressed by the warm welcome and efficient organization from the hosts, the University of Central Lancaster in Preston. The meetings were successful in terms of the number of participants and the breadth and depth of science discussed, but also in terms of the spread of that science across the media.  相似文献   
52.
53.
Although evidence for Quaternary environmental changes in the Arabian Peninsula is now growing, research has mostly been conducted in the United Arab Emirates (UAE) and in the Sultanate of Oman. There have been virtually no recent studies in Saudi Arabia, especially in the central region such as around Al‐Quwaiayh. In this area there are a series of outwash plains developed along the eastern edge of the Arabian Shield that formed in the late Quaternary. Four sedimentary sections, which are representative of the deposits that have accumulated, have been studied and five luminescence ages obtained. These are the first luminescence ages acquired from Quaternary sediments in central Saudi Arabia. The preserved fluvial deposits in the study area have formed during humid events at ca. 54 ka, ca. 39 ka and ca. 0.8 ka. In more recent times aeolian sands have been encroaching on to the distal parts of the outwash plains. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
54.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   
55.
Miller Range (MIL) 090340 and MIL 090206 are olivine‐rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine‐rich achondrites. We conclude that they are brachinite‐like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3 ± 0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe‐oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3 ± 0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11 × 3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1 ± 0.6), augite, chromite, metal, and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine‐spinel, olivine‐augite, and two‐pyroxene thermometry range from ~800 to 930 °C. In both samples, symplectic intergrowths of Ca‐poor orthopyroxene + opaque phases (Fe‐oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08 ± 0.30‰, δ17O = 2.44 ± 0.21‰, and Δ17O = ?0.20 ± 0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57 ± 0.06 and 2.59 ± 0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite‐like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic “reduction rims” in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S‐rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite‐like achondrites. The poikilitic pyroxene area of MIL 090206 is more typical of brachinite‐like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low‐degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.  相似文献   
56.
57.
The potential genetic link between granites and their host sediments can be assessed using zircon age inheritance patterns. In the Lachlan fold belt, southeastern Australia, granites and associated high-grade metasedimentary rocks intrude low-grade Ordovician country rock. This relationship is well-exposed in the Tallangatta region, northeast Victoria (part of the Wagga-Omeo Metamorphic Complex). In this region granites (two I-types and two S-types) have intruded during the mid-late Silurian between approximately 410–430 Ma based on the ages of magmatic zircons. The age spectra for inherited zircons from the granites have been compared with those of detrital zircons from the enclosing low- and high-grade metasediments. In broad terms, both for detrital zircons in all four sediments and for inherited zircons in three of the four granites, the dominant ages are early Paleozoic and Late Precambrian, with sporadic older Precambrian ages extending up to 3.5 Ga. The ages of the youngest detrital zircons from the low-grade Lockhart and Talgarno terranes limit the time of sedimentation to ca. 466 Ma or younger. The youngest detrital zircons from two samples of the high-grade Gundowring terrane are 473 Ma, making these sediments Ordovician or younger, not Cambrian as originally suggested. However, the individual age spectra for the four selected metasediments are not well matched when closely examined. The age spectra of the inherited zircons in the granites also do not adequately match those in any of the metasediments. Thus, the metasediments might not be representative of the actual source rocks of the granites. While the exact source of the granites cannot be identified from the analysed samples, the existence of a large population of ca. 495 Ma inherited zircon grains in the S-type granites requires that the granite source contains a significant proportion of Cambrian or younger material. This does not preclude the existence of a Precambrian basement to the Lachlan fold belt but indicates that at the level of S-type magma generation, a Cambrian and/or younger protolith is required. Received: 28 August 1998 / Accepted: 7 July 1999  相似文献   
58.
Across the extreme south of Patagonia, the Magallanes‐Fagnano Fault (MFF) accommodates the left‐lateral relative motion between South America and Scotia plates. In this paper, we present an updated view of the geometry of the eastern portion of the MFF outcropping in Tierra del Fuego. We subdivide the MFF in eight segments on the basis of their deformation styles, using field mapping and interpretation of high‐resolution imagery. We quantify coseismic ruptures of the strongest recorded 1949, Mw7.5 earthquake, and determine its eastern termination. We recognize several co‐seismic offsets in man‐made features showing a sinistral shift up to 6.5 m, greater than previously estimated. Using 10Be cosmogenic nuclides depth profiles, we date a cumulated offset in post‐glacial morphologies and estimate the long‐term slip rate of the eastern MFF. We quantify a 6.4 ± 0.9 mm/a left‐lateral fault slip rate, which overlaps geodetic velocity and suggests stable fault behaviour since Pleistocene.  相似文献   
59.
We reconstruct one of the longest relative sea‐level (RSL) records in north‐west Europe from the north coast of mainland Scotland, using data collected from three sites in Loch Eriboll (Sutherland) that we combine with other studies from the region. Following deglaciation, RSL fell from a Lateglacial highstand of +6?8 m OD (Ordnance Datum = ca. mean sea level) at ca. 15 k cal a BP to below present, then rose to an early Holocene highstand and remained at ca. +1 m OD between ca. 7 and 3 k cal a BP, before falling to present. We find no evidence for significant differential Holocene glacio‐isostatic adjustment between sites on the north‐west (Lochinver, Loch Laxford), north (Loch Eriboll) and north‐east (Wick) coast of mainland Scotland. This suggests that the region was rapidly deglaciated and there was little difference in ice loads across the region. From one site at the head of Loch Eriboll we report the most westerly sedimentary evidence for the early Holocene Storegga tsunami on the Scottish mainland. The presence of the Storegga tsunami in Loch Eriboll is predicted by a tsunami wave model, which suggests that the tsunami impacted the entire north coast of Scotland and probably also the Atlantic coastline of north‐west Scotland.
  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号