首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   47篇
  国内免费   13篇
测绘学   14篇
大气科学   46篇
地球物理   241篇
地质学   185篇
海洋学   62篇
天文学   164篇
自然地理   182篇
  2021年   10篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   13篇
  2016年   28篇
  2015年   19篇
  2014年   19篇
  2013年   45篇
  2012年   24篇
  2011年   31篇
  2010年   20篇
  2009年   47篇
  2008年   41篇
  2007年   36篇
  2006年   33篇
  2005年   33篇
  2004年   48篇
  2003年   26篇
  2002年   41篇
  2001年   30篇
  2000年   21篇
  1999年   15篇
  1998年   23篇
  1997年   21篇
  1996年   16篇
  1995年   9篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   23篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   13篇
  1983年   6篇
  1982年   12篇
  1981年   9篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   11篇
  1975年   9篇
  1974年   4篇
  1973年   5篇
  1970年   3篇
  1924年   2篇
排序方式: 共有894条查询结果,搜索用时 15 毫秒
241.
The increasing frequency and/or severity of extreme climate events are becoming increasingly apparent over multi‐decadal timescales at the global scale, albeit with relatively low scientific confidence. At the regional scale, scientific confidence in the future trends of extreme event likelihood is stronger, although the trends are spatially variable. Confidence in these extreme climate risks is muddied by the confounding effects of internal landscape system dynamics and external forcing factors such as changes in land use and river and coastal engineering. Geomorphology is a critical discipline in disentangling climate change impacts from other controlling factors, thereby contributing to debates over societal adaptation to extreme events. We review four main geomorphic contributions to flood and storm science. First, we show how palaeogeomorphological and current process studies can extend the historical flood record while also unraveling the complex interactions between internal geomorphic dynamics, human impacts and changes in climate regimes. A key outcome will be improved quantification of flood probabilities and the hazard dimension of flood risk. Second, we present evidence showing how antecedent geomorphological and climate parameters can alter the risk and magnitude of landscape change caused by extreme events. Third, we show that geomorphic processes can both mediate and increase the geomorphological impacts of extreme events, influencing societal risk. Fourthly, we show the potential of managing flood and storm risk through the geomorphic system, both near‐term (next 50 years) and longer‐term. We recommend that key methods of managing flooding and erosion will be more effective if risk assessments include palaeodata, if geomorphological science is used to underpin nature‐based management approaches, and if land‐use management addresses changes in geomorphic process regimes that extreme events can trigger. We argue that adopting geomorphologically‐grounded adaptation strategies will enable society to develop more resilient, less vulnerable socio‐geomorphological systems fit for an age of climate extremes. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
242.
In this study we evaluate the extent to which accurate topographic data can be obtained by applying Structure from Motion (SfM) photogrammetric methods to archival imagery. While SfM has proven valuable in photogrammetric applications using specially acquired imagery (e.g. from unmanned aerial vehicles), it also has the potential to improve the precision of topographic data and the ease with which can be produced from historical imagery. We evaluate the application of SfM to a relatively extreme case, one of low relative relief: a braided river–floodplain system. We compared the bundle adjustments of SfM and classical photogrammetric methods, applied to eight dates. The SfM approach resulted in data quality similar to the classical approach, although the lens parameter values (e.g. focal length) recovered in the SfM process were not necessarily the same as their calibrated equivalents. Analysis showed that image texture and image overlap/configuration were critical drivers in the tie‐point generation which impacted bundle adjustment quality. Working with archival imagery also illustrated the general need for the thorough understanding and careful application of (commercial) SfM software packages. As with classical methods, the propagation of (random) error in the estimation of lens and exterior orientation parameters using SfM methods may lead to inherent systematic error in the derived point clouds. We have shown that linear errors may be accounted for by point cloud registration based on a reference dataset, which is vital for the further application in quantitative morphological analyses when using archival imagery. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
243.
Structure‐from‐motion (SfM) photogrammetry is revolutionising the collection of detailed topographic data, but insight into geomorphological processes is currently restricted by our limited understanding of SfM survey uncertainties. Here, we present an approach that, for the first time, specifically accounts for the spatially variable precision inherent to photo‐based surveys, and enables confidence‐bounded quantification of 3D topographic change. The method uses novel 3D precision maps that describe the 3D photogrammetric and georeferencing uncertainty, and determines change through an adapted state‐of‐the‐art fully 3D point‐cloud comparison (M3C2), which is particularly valuable for complex topography. We introduce this method by: (1) using simulated UAV surveys, processed in photogrammetric software, to illustrate the spatial variability of precision and the relative influences of photogrammetric (e.g. image network geometry, tie point quality) and georeferencing (e.g. control measurement) considerations; (2) we then present a new Monte Carlo procedure for deriving this information using standard SfM software and integrate it into confidence‐bounded change detection; before (3) demonstrating geomorphological application in which we use benchmark TLS data for validation and then estimate sediment budgets through differencing annual SfM surveys of an eroding badland. We show how 3D precision maps enable more probable erosion patterns to be identified than existing analyses, and how a similar overall survey precision could have been achieved with direct survey georeferencing for camera position data with precision half as good as the GCPs'. Where precision is limited by weak georeferencing (e.g. camera positions with multi‐metre precision, such as from a consumer UAV), then overall survey precision can scale as n½ of the control precision (n = number of images). Our method also provides variance–covariance information for all parameters. Thus, we now open the door for SfM practitioners to use the comprehensive analyses that have underpinned rigorous photogrammetric approaches over the last half‐century. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
244.
Acta Geotechnica - Thermal spallation drilling is a contact-less means of borehole excavation that works by exposing a rock surface to a high-temperature jet flame. In this study, we investigate...  相似文献   
245.
Bathymetric patterns of macrofaunal species diversity are best documented in the western North Atlantic where diversity is a unimodal function of depth, peaking in the mid-bathyal zone and being depressed in the upper slope and abyss. There are few inter-basin studies of diversity-depth trends that are controlled for taxonomy, sampling gear, and diversity measures. In this paper, we compare gastropod diversity gradients in the North American Basin of the Atlantic to estimates of diversity in 9 other regions: the Norwegian Sea, West European Basin, Guiana Basin, Gambia Basin, Equatorial Mid-Atlantic, Brazil Basin, Angola Basin, Cape Basin and Argentine Basin. All samples were collected with epibenthic sleds, and diversity calculated by the Sanders-Hurlbert normalized expected number of species. While sampling in other regions is generally less complete than in the western North Atlantic, results indicate that a unimodal pattern is not universal. Diversity can increase, decrease or show no relationship with depth. The level of diversity also varies among basins relative to the western North Atlantic, being depressed in the Norwegian Sea, at bathyal depths in the eastern North Atlantic, and below an oxygen minimum zone in the Cape Basin, and generally elevated at tropical latitudes and in abyssal regions where food supply is high. Associations between gastropod diversity and the ecology and geology of basins suggest that productivity, oxygen concentration, hydrographic disturbance and evolutionary-historical processes may be implicated in shaping bathymetric diversity gradients, but specific causes are difficult to discern. Much more intensive sampling, analyses of other major taxa, and more detailed ecological data are necessary to understand deep-sea biogeography at within- and between-basin spatial scales.  相似文献   
246.
We used a new experimental device called PASS (PArticle Sinking Simulator) during MedFlux to simulate changes in in situ hydrostatic pressure that particles experience sinking from mesopelagic to bathypelagic depths. Particles, largely fecal pellets, were collected at 200 m using a settling velocity NetTrap (SV NetTrap) in Ligurian Sea in April 2006 and incubated in high-pressure bottles (HPBs) of the PASS system under both atmospheric and continuously increasing pressure conditions, simulating the pressure change experienced at a sinking rate of 200 m d−1. Chemical changes over time were evaluated by measuring particulate organic carbon (POC), carbohydrates, transparent exopolymer particles (TEP), amino acids, lipids, and chloropigments, as well as dissolved organic carbon (DOC) and dissolved carbohydrates. Microbial changes were evaluated microscopically, using diamidinophenylindole (DAPI) stain for total cell counts and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) for phylogenetic distinctions. Concentrations (normalized to POC) of particulate chloropigments, carbohydrates and TEP decreased under both sets of incubation conditions, although less under the increasing pressure regime than under atmospheric conditions. By contrast, dissolved carbohydrates (normalized to DOC) were higher after incubation and significantly higher under atmospheric conditions, suggesting they were produced at the expense of the particulate fraction. POC-normalized particulate wax/steryl esters increased only under pressure, suggesting biochemical responses of prokaryotes to the increasing pressure regime. The prokaryotic community initially consisted of 43% Bacteria, 12% Crenarchaea and 11% Euryarchaea. After incubation, Bacteria dominated (90%) the prokaryote community in all cases, with γ-Proteobacteria comprising the greatest fraction, followed by the Cytophaga–Flavobacter cluster and α-Proteobacteria group. Using the PASS system, we obtained chemical and microbial evidence that degradation by prokaryotes associated with fecal pellets sinking through mesopelagic waters is limited by the increasing pressure they experience.  相似文献   
247.
The transfer of material through the twilight zone of the ocean is controlled by sinking particles that contain organic matter (OM) and mineral ballast. During the MedFlux field program in the northwestern Mediterranean Sea in 2003, sinking particulate matter was collected in time series (TS) and settling velocity (SV) traps and analyzed for amino acids, lipids, and pigments (along with ballast minerals) [Lee, C., Armstrong, R.A., Wakeham, S.G., Peterson, M.L., Miquel, J.C., Cochran, J.K., Fowler, S.W., Hirschberg, D., Beck, A. Xue, J., 2009b. Particulate matter fluxes in time series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Research II, this volume [doi:10.1016/j.dsr2.2008.12.003]]. The goal was to identify how organic chemical compositions of sinking particles varied as a function of their in-situ settling velocity. The TS record was used to define the biogeochemical character and temporal pattern in flux during the period of SV trap deployment. Temporal variations in organic and mineral compositions are consistent with particle biogeochemistry being driven by the seasonal succession of phytoplankton. Spring diatom bloom conditions led to a high flux of rapidly sinking aggregates and zooplankton fecal matter; summer oligotrophy followed and was characterized by a higher proportion of slowly sinking phytoplankton cells. Bacterial degradation is particularly important during the low-flux summer period. Settling velocity traps show that a large proportion of particulate organic matter sinks at 200–500 m d−1. Organic compositions of this fast-sinking material mirrors that of fecal pellets and aggregated material that sinks as the spring bloom terminates. More-slowly sinking OM bears a stronger signature of bacterial degradation than do the faster-sinking particles. The observation that compositions of SV-sorted fractions are different implies that the particle field is compositionally heterogeneous over a range of settling velocities. Thus physical and biological exchange between fast-sinking and slow-sinking particles as they pass down the water column must be incomplete.  相似文献   
248.
Hindered settling velocity of cohesive/non-cohesive sediment mixtures   总被引:1,自引:0,他引:1  
New methods are proposed for predicting the hindered settling conditions encountered by concentrated suspensions containing mixtures of sand particles and mud flocs. These methods, based on two-fraction formulations, are developed by consideration of the settling characteristics of monodisperse and polydisperse solid particle suspensions applied to cohesive/non-cohesive mixtures of mud flocs and sand particles. The behaviour of these predictive methods is evaluated over a wide range of mixture conditions and compared with existing formulations, with their parametric dependence on the relative volumetric concentrations and floc/particle sizes for the mud and sand constituents established. The results indicate that consideration of the full return flow effects generated by both fractions provides the best modelling framework for predicting the hindered settling conditions over a wide range of sand–mud mixtures.  相似文献   
249.
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号