首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   819篇
  免费   47篇
  国内免费   13篇
测绘学   14篇
大气科学   45篇
地球物理   235篇
地质学   178篇
海洋学   61篇
天文学   167篇
自然地理   179篇
  2021年   10篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   13篇
  2016年   28篇
  2015年   19篇
  2014年   17篇
  2013年   44篇
  2012年   23篇
  2011年   31篇
  2010年   19篇
  2009年   50篇
  2008年   42篇
  2007年   38篇
  2006年   35篇
  2005年   38篇
  2004年   44篇
  2003年   28篇
  2002年   39篇
  2001年   30篇
  2000年   20篇
  1999年   13篇
  1998年   21篇
  1997年   21篇
  1996年   15篇
  1995年   8篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   23篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   12篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1979年   5篇
  1978年   3篇
  1977年   9篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1970年   3篇
  1965年   2篇
  1924年   2篇
排序方式: 共有879条查询结果,搜索用时 671 毫秒
121.
Practically identical Mössbauer spectra have been obtained for 40 ferromanganese nodules from a wide variety of marine and fresh-water locations. None of the nodules examined contains more than one weight percent Fe2+, so no more than a few percent of the total iron in these nodules can be Fe2+. Most of the iron is present as Fe3+ in paramagnetic or superparamagnetic oxide phases, although hysteresis loops show the presence of small amounts of ferromagnetic phases not detected by the Mössbauer technique.  相似文献   
122.
Due to the uplift of Qinghai-Tibet Plateau(QTP), the cryosphere gradually developed on the higher mountain summits after the Neocene, becoming widespread during the Late Quaternary. During this time, permafrost on the QTP experienced repeated expansion and degradation. Based on the remains and cross-correlation with other proxy records such as those from glacial landforms, ice-core and paleogeography, the evolution and changes of permafrost and environmental changes on the QTP during the past 150,000 years were deduced and are presented in this paper. At least four obvious cycles of the extensive and intensive development, expansion and decay of permafrost occurred during the periods of 150–130, 80–50, 30–14 and after 10.8 ka B.P.. During the Holocene, fluctuating climatic environments affected the permafrost on the QTP, and the peripheral mountains experienced six periods of discernible permafrost changes:(1) Stable development of permafrost in the early Holocene(10.8 to 8.5–7.0 ka B.P.);(2) Intensive permafrost degradation during the Holocene Megathermal Period(HMP, from 8.5–7.0 to 4.0–3.0 ka B.P.);(3) Permafrost expansion during the early Neoglacial period(ca. 4,000–3,000 to 1,000 a B.P.);(4) Relative degradation during the Medieval Warm Period(MWP, from 1,000 to 500 a B.P.);(5) Expansion of permafrost during the Little Ice Age(LIA, from 500 to 100 a B.P.);(6) Observed and predicted degradation of permafrost during the 20 th and 21 st century. Each period differed greatly in paleoclimate, paleoenvironment, and permafrost distribution, thickness, areal extent, and ground temperatures, as well as in the development of periglacial phenomena. Statistically, closer dating of the onset permafrost formation, more identification of permafrost remains with richer proxy information about paleoenvironment, and more dating information enable higher resolution for paleo-permafrost reconstruction. Based on the scenarios of persistent climate warming of 2.2~2.6 °C in the next 50 years, and in combination of the monitored trends of climate and permafrost changes, and model predictions suggest an accelerated regional degradation of plateau permafrost. Therefore, during the first half of the 21 st century, profound changes in the stability of alpine ecosystems and hydro(geo)logical environments in the source regions of the Yangtze and Yellow rivers may occur. The foundation stability of key engineering infrastructures and sustainable economic development in cold regions on the QTP may be affected.  相似文献   
123.
Abstract— Here I discuss the series of events that led to the formation and evolution of our planet to examine why the Earth is unique in the solar system. A multitude of factors are involved: These begin with the initial size and angular momentum of the fragment that separated from a molecular cloud; such random factors are crucial in determining whether a planetary system or a double star develops from the resulting nebula. Another requirement is that there must be an adequate concentration of heavy elements to provide the 2% “rock” and “ice” components of the original nebula. An essential step in forming rocky planets in the inner nebula is the loss of gas and depletion of volatile elements, due to early solar activity that is linked to the mass of the central star. The lifetime of the gaseous nebula controls the formation of gas giants. In our system, fine timing was needed to form the gas giant, Jupiter, before the gas in the nebula was depleted. Although Uranus and Neptune eventually formed cores large enough to capture gas, they missed out and ended as ice giants. The early formation of Jupiter is responsible for the existence of the asteroid belt (and our supply of meteorites) and the small size of Mars, whereas the gas giant now acts as a gravitational shield for the terrestrial planets. The Earth and the other inner planets accreted long after the giant planets, from volatile-depleted planetesimals that were probably already differentiated into metallic cores and silicate mantles in a gas-free, inner nebula. The accumulation of the Earth from such planetesimals was essentially a stochastic process, accounting for the differences among the four rocky inner planets—including the startling contrast between those two apparent twins, Earth and Venus. Impact history and accretion of a few more or less planetesimals were apparently crucial. The origin of the Moon by a single massive impact with a body larger than Mars accounts for the obliquity (and its stability) and spin of the Earth, in addition to explaining the angular momentum, orbital characteristics, and unique composition of the Moon. Plate tectonics (unique among the terrestrial planets) led to the development of the continental crust on the Earth, an essential platform for the evolution of Homo sapiens. Random major impacts have punctuated the geological record, accentuating the directionless course of evolution. Thus a massive asteroidal impact terminated the Cretaceous Period, resulted in the extinction of at least 70% of species living at that time, and led to the rise of mammals. This sequence of events that resulted in the formation and evolution of our planet were thus unique within our system. The individual nature of the eight planets is repeated among the 60-odd satellites—no two appear identical. This survey of our solar system raises the question whether the random sequence of events that led to the formation of the Earth are likely to be repeated in detail elsewhere. Preliminary evidence from the “new planets” is not reassuring. The discovery of other planetary systems has removed the previous belief that they would consist of a central star surrounded by an inner zone of rocky planets and an outer zone of giant planets beyond a few astronomical units (AU). Jupiter-sized bodies in close orbits around other stars probably formed in a similar manner to our giant planets at several astronomical units from their parent star and, subsequently, migrated inwards becoming stranded in close but stable orbits as “hot Jupiters”, when the nebula gas was depleted. Such events would prevent the formation of terrestrial-type planets in such systems.  相似文献   
124.
"The panel provided good, solid, interdisciplinary advice on a variety of challenging, state-of-the-art issues."  相似文献   
125.
This column focuses on recent work in Europe. The intent is to present to American readers relevant studies they would not normally see. Much of the following was presented at the 9th International Congress of Pesticide Chemistry last summer in London. The congress was jointly sponsored by the International Union of Pure & Applied Chemistry and the Royal Society of Chemistry.  相似文献   
126.
127.
Geomorphology has increasingly considered the role of biotic factors as controls upon geomorphic processes across a wide range of spatial and temporal scales. Where timescales are long (centennial and longer), it has been possible to quantify relationships between geomorphic processes and vegetation using, for example, the pollen record. However, where the biotic agents are fauna, longer term reconstruction of the impacts of biological activity upon geomorphic processes is more challenging. Here, we review the prospect of using environmental DNA as a molecular proxy to decipher the presence and nature of faunal influences on geomorphic processes in both present and ancient deposits. When used appropriately, this method has the potential to improve our understanding of biotic drivers of geomorphic processes, notably fauna, over long timescales and so to reconstruct how such drivers might explain the landscape as we see it today. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
128.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
129.
Research in the 1990s showed that bed-material transport rates could be estimated at the reach scale in both one-dimension and, over small spatial scales (10s of m), in two-dimensions. The limit on the latter was the spatial scale over which it was possible to obtain distributed data on morphological change. Here, we revisit the morphological method given progress in both topographical data acquisition and hydraulic modelling. The bed-material transport needed to conserve mass is calculated in both one and two dimensions for a 1600 m × 300 m Alpine braided river “laboratory”. High-resolution topographical data were acquired by laser scanning to quantify Digital Elevation Models (DEMs), and morphological changes caused by the flushing of the water intake were derived from repeated surveys. Based on DEMs of differences, 1D bed-material transport rates were calculated using the morphological method. Then, a 2D hydraulic model was combined with a topographic correction to route sediment through the network of braided channels and to obtain a spatially variable estimate of transport in both downstream and cross-stream directions. Monte Carlo simulation was applied to the routing model parameters, allowing identification of the most probable parameter values needed to minimize negative transport. The results show that within-section spatial compensation of erosion and deposition using the 1D treatment leads to substantial local errors in transport rate estimates, to a degree related to braiding intensity. Even though the 2D application showed that a large proportion of the total transport was actually concentrated into one main channel during the studied low flow event, the proportion of transport in secondary anabranches is substantial when the river starts braiding. Investigations of the effects of DEM resolution, competent flow duration and survey frequency related to ‘travelling bedload’ and sequential erosion-deposition emphasized the critical importance of careful data collection in the application of the morphological method. © 2019 John Wiley & Sons, Ltd.  相似文献   
130.
As a topographic modelling technique, structure-from-motion (SfM) photogrammetry combines the utility of digital photogrammetry with a flexibility and ease of use derived from multi-view computer vision methods. In conjunction with the rapidly increasing availability of imagery, particularly from unmanned aerial vehicles, SfM photogrammetry represents a powerful tool for geomorphological research. However, to fully realize this potential, its application must be carefully underpinned by photogrammetric considerations, surveys should be reported in sufficient detail to be repeatable (if practical) and results appropriately assessed to understand fully the potential errors involved. To deliver these goals, robust survey and reporting must be supported through (i) using appropriate survey design, (ii) applying suitable statistics to identify systematic error (bias) and to estimate precision within results, and (iii) propagating uncertainty estimates into the final data products. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号