首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   95篇
  国内免费   20篇
测绘学   27篇
大气科学   83篇
地球物理   405篇
地质学   440篇
海洋学   119篇
天文学   318篇
综合类   2篇
自然地理   252篇
  2021年   26篇
  2020年   15篇
  2019年   30篇
  2018年   32篇
  2017年   33篇
  2016年   46篇
  2015年   34篇
  2014年   37篇
  2013年   78篇
  2012年   40篇
  2011年   72篇
  2010年   44篇
  2009年   76篇
  2008年   71篇
  2007年   57篇
  2006年   61篇
  2005年   62篇
  2004年   61篇
  2003年   52篇
  2002年   51篇
  2001年   47篇
  2000年   27篇
  1999年   26篇
  1998年   44篇
  1997年   26篇
  1996年   24篇
  1995年   14篇
  1994年   19篇
  1993年   20篇
  1992年   22篇
  1991年   31篇
  1990年   17篇
  1989年   12篇
  1988年   13篇
  1987年   17篇
  1986年   8篇
  1985年   23篇
  1984年   28篇
  1983年   27篇
  1982年   17篇
  1981年   22篇
  1980年   17篇
  1979年   21篇
  1978年   23篇
  1977年   31篇
  1976年   13篇
  1975年   15篇
  1974年   11篇
  1973年   15篇
  1968年   6篇
排序方式: 共有1646条查询结果,搜索用时 46 毫秒
991.
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   
992.
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r  相似文献   
993.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   
994.
995.
Rare‐earth element and Y partitioning between garnet and monazite was measured in metamorphic rocks from western Norway to provide more confidence in tying monazite U/Th–Pb dates to P–T conditions recorded in garnet. A subset of samples has low‐Y garnet mantles and low‐Y monazite cores that gave Y‐partitioning temperatures similar to independently determined metamorphic temperatures. In combination with previously published data, these monazite–garnet pairs have temperature‐dependent partitioning of the HREE from Dy to Lu, and nonsystematic partitioning of the LREE from La–Gd. The temperature‐dependent partitioning must be considered when using HREE to assess which portions of garnet and monazite might have coexisted, but experiments are needed to place the dependence on a firm footing.  相似文献   
996.
The Carboniferous northern Pennine Basin remains the type locality for the ‘block and basin’ tectonic framework model. It has been widely believed that during periods of tectonic extension, large low-density bodies within the basement permit buoyant blocks to resist isostatic subsidence. However, lithosphere-scale structural and geodynamic modelling experiments dispute this; suggesting instead that the formation of intra-basinal highs occurs prior to lithospheric extension. In northern UK, this tectonic framework is controlled by a combination of tectonic stress, isostasy and the buoyancy forces of low-density granite, lithospheric flexure and, importantly, the inherited structural framework. It is hoped that further study can lead to a greater appreciation of the interplay of structural and geodynamic process that control the ‘block and basin’ framework.  相似文献   
997.
Collecting a representative time‐integrated sample of fluvial fine‐grained suspended sediment (<63 μm) is an important requirement for the understanding of environmental, geomorphological, and hydrological processes operating within watersheds. This study (a) characterized the hydrodynamic behaviour of a commonly used time‐integrated fine sediment sampler (TIFSS) using an acoustic Doppler velocimeter (ADV) in controlled laboratory conditions and (b) measured the mass collection efficiency (MCE) of the sampler by an acoustic Doppler current profiler under field conditions. The laboratory results indicated that the hydrodynamic evaluations associated with the original development of the TIFSS involved an underestimation of the inlet flow velocity of the sampler that results in a significant overestimation of the theoretical MCE. The ADV data illustrated that the ratio of the inlet flow velocity of the sampler to the ambient velocity was 87% and consequently, it can be assumed that a representative sample of the ambient fine suspended particles entered into the sampler. The field results showed that the particle size distribution of the sediment collected by the TIFSS was statistically similar to that for the ambient sediment in the Red River, Manitoba, Canada. The MCE of the TIFSS in the field trials appeared to be as low as 10%. Collecting a representative sample in the field was consistent with the previous findings that the TIFSS is a suitable sampler for the collection of a representative sample of sufficient mass (e.g., >1 g) for the investigation of the properties of fluvial fine‐grained suspended sediment. Hydrodynamic evaluation of the TIFSS under a wider range of hydraulic conditions is suggested to assess the performance of the sampler during high run‐off events.  相似文献   
998.
999.
Optical properties of colored dissolved organic matter (CDOM) were measured as a tracer of polluted waters in a Southern California surf-zone with consistently high levels of fecal indicator bacteria. Salinity, temperature, fecal coliform, absorbance (200-700nm) and fluorescence (lambda(excitation)=350nm; lambda(emission)=360-650nm) were measured in the creek and surf-zone during a dry and rain event. Fluorescence to absorption ratios for CDOM were used to distinguish water masses, with two distinct CDOM end-members identified as creek (flu/abs=8.7+/-0.8x10(4)) and coastal (flu/abs=2.2+/-0.3x10(4)). Waters containing the same CDOM end-member had highly variable bacterial levels during the dry event, suggesting intermittent sources of bacteria added to a uniform water source, consistent with marine birds. During the rain event, increased levels of the creek end-member and bacteria indicated a second bacteria source from runoff.  相似文献   
1000.
The performance of an inexpensive, ensemble-based optimal interpolation (EnOI) scheme that uses a stationary ensemble of model anomalies to approximate forecast error covariances, is compared with that of an ensemble Kalman filter (EnKF). The model to which the methods are applied is a pair of “perfect”, one-dimensional, linear advection equations for two related variables. While EnOI is sub-optimal, it can give results that are comparable to those of the EnKF. The computational cost of EnOI is typically about times less than that of EnKF, where is the ensemble size. We suggest that EnOI may provide a practical and cost-effective alternative to the EnKF for some applications where computational cost is a limiting factor. We demonstrate that when the ensemble size is smaller than the dimension of the model’s sub-space, both the EnKF and EnOI may require localisation around each observation to eliminate effects of sampling error and to increase the effective number of independent ensemble members used to construct an analysis. However, localisation can degrade an analysis if the length-scales of the localising function are too short. We demonstrate that, as the length-scale of the localising function is decreased, localisation can significantly compromise the model’s dynamical balances. We also find that localisation artificially amplifies high frequencies for applications of the EnKF. Based on our experiments, for applications where localisation is necessary, the length-scales of the localisation should be larger than the decorrelation length-scales of the variables being updated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号