首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2393篇
  免费   90篇
  国内免费   18篇
测绘学   62篇
大气科学   240篇
地球物理   547篇
地质学   734篇
海洋学   243篇
天文学   452篇
综合类   1篇
自然地理   222篇
  2023年   11篇
  2022年   13篇
  2021年   34篇
  2020年   36篇
  2019年   33篇
  2018年   47篇
  2017年   50篇
  2016年   70篇
  2015年   51篇
  2014年   80篇
  2013年   120篇
  2012年   65篇
  2011年   141篇
  2010年   93篇
  2009年   134篇
  2008年   110篇
  2007年   107篇
  2006年   112篇
  2005年   90篇
  2004年   76篇
  2003年   96篇
  2002年   69篇
  2001年   64篇
  2000年   58篇
  1999年   43篇
  1998年   36篇
  1997年   32篇
  1996年   35篇
  1995年   31篇
  1994年   34篇
  1993年   32篇
  1992年   25篇
  1991年   30篇
  1990年   23篇
  1989年   16篇
  1988年   23篇
  1987年   24篇
  1986年   21篇
  1985年   43篇
  1984年   43篇
  1983年   36篇
  1982年   37篇
  1981年   21篇
  1980年   26篇
  1979年   29篇
  1978年   18篇
  1977年   13篇
  1975年   8篇
  1974年   10篇
  1973年   9篇
排序方式: 共有2501条查询结果,搜索用时 281 毫秒
931.
Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7?W?m?2 (out of 345?W?m?2) and 4?W?m?2 (out of 192?W?m?2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3?W?m?2 (out of 398?W?m?2) and 3?W?m?2 (out of 23?W?m?2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12?W?m?2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106?W?m?2 and 130?W?m?2.  相似文献   
932.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   
933.
We analyzed the latest Early Cretaceous to Miocene sections (~110–7 Ma) in 11 New Jersey and Delaware onshore coreholes (Ocean Drilling Program Legs 150X and 174AX). Fifteen to seventeen Late Cretaceous and 39–40 Cenozoic sequence boundaries were identified on the basis of physical and temporal breaks. Within‐sequence changes follow predictable patterns with thin transgressive and thick regressive highstand systems tracts. The few lowstands encountered provide critical constraints on the range of sea‐level fall. We estimated paleowater depths by integrating lithofacies and biofacies analyses and determined ages using integrated biostratigraphy and strontium isotopic stratigraphy. These datasets were backstripped to provide a sea‐level estimate for the past ~100 Myr. Large river systems affected New Jersey during the Cretaceous and latest Oligocene–Miocene. Facies evolved through eight depositional phases controlled by changes in accommodation, long‐term sea level, and sediment supply: (1) the Barremian–earliest Cenomanian consisted of anastomosing riverine environments associated with warm climates, high sediment supply, and high accommodation; (2) the Cenomanian–early Turonian was dominated by marine sediments with minor deltaic influence associated with long‐term (107 year) sea‐level rise; (3) the late Turonian through Coniacian was dominated by alluvial and delta plain systems associated with long‐term sea‐level fall; (4) the Santonian–Campanian consisted of marine deposition under the influence of a wave‐dominated delta associated with a long‐term sea‐level rise and increased sediment supply; (5) Maastrichtian–Eocene deposition consisted primarily of starved siliciclastic, carbonate ramp shelf environments associated with very high long‐term sea level and low sediment supply; (6) the late Eocene–Oligocene was a starved siliciclastic shelf associated with moderately high sea‐level and low sediment supply; (7) late early–middle Miocene consisted of a prograding shelf under a strong wave‐dominated deltaic influence associated with major increase in sediment supply and accommodation due to local sediment loading; and (8) over the past 10 Myr, low accommodation and eroded coastal systems were associated with low long‐term sea level and low rates of sediment supply due to bypassing.  相似文献   
934.
GIS analysis at 30-m resolution reveals that effectiveness of slope-destabilizing processes in the San Francisco Bay area varies with compass direction. Nearly half the soil slip/debris flows mapped after the catastrophic rainstorm of 3–5 January 1982 occurred on slopes that face S to WSW, whereas fewer than one-quarter have a northerly aspect. Azimuthal analysis of hillside properties for susceptible terrain near the city of Oakland suggests that the skewed aspect of these landslides primarily reflects vegetation type, ridge and valley alignment, and storm–wind direction. Bedrock geology, soil expansivity, and terrain height and gradient also were influential but less so; the role of surface curvature is not wholly resolved. Normalising soil-slip aspect by that of the region's NNW-striking topography shifts the modal azimuth of soil-slip aspect from SW to SE, the direction of origin of winds during the 1982 storm—but opposite that of the prevailing WNW winds. Wind from a constant direction increases rainfall on windward slopes while diminishing it on leeward slopes, generating a modelled difference in hydrologically effective rainfall of up to 2:1 on steep hillsides in the Oakland area. This contrast is consistent with numerical simulations of wind-driven rain and with rainfall thresholds for debris-flow activity. We conclude that storm winds from the SE in January 1982 raised the vulnerability of the Bay region's many S-facing hillsides, most of which are covered in shallow-rooted shrub and grass that offer minimal resistance to soil slip. Wind-driven rainfall also appears to have controlled debris-flow location in a major 1998 storm and probably others. Incorporating this overlooked influence into GIS models of debris-flow likelihood would improve predictions of the hazard in central California and elsewhere.  相似文献   
935.
936.
We present a systematic study of GX 339−4 in both its very high and low hard states from simultaneous observations made with XMM–Newton and RXTE in 2002 and 2004. The X-ray spectra of both these extreme states exhibit strong reflection signatures, with a broad, skewed Fe Kα line clearly visible above the continuum. Using a newly developed, self-consistent reflection model which implicitly includes the blackbody radiation of the disc as well as the effect of Comptonization, blurred with a relativistic line function, we were able to infer the spin parameter of GX 339−4 to be  0.935 ± 0.01  (statistical) ±0.01 (systematic) at 90 per cent confidence. We find that both states are consistent with an ionized thin accretion disc extending to the innermost stable circular orbit around the rapidly spinning black hole.  相似文献   
937.
We summarize evidence that neither dynamo theory nor the observational data give strong support to the idea that stellar magnetic fields must have dipolar rather than quadrupolar symmetry with respect to the stellar equator. We demonstrate that even the most basic model for magnetic stellar activity, i.e. the Parker migratory dynamo, provides many possibilities for the excitation of large-scale stellar magnetic fields of non-dipolar symmetry. We demonstrate the spontaneous transition of the dynamo-excited magnetic field from one symmetry type to another. We explore observational tests to distinguish between the two types of magnetic field symmetry, and thus detect the presence of quadrupolar magnetic symmetry in stars. Complete absence of quadrupolar symmetry would present a distinct challenge for contemporary stellar dynamo theory. We revisit some observations which, depending on further clarification, may already be revealing some properties of the quadrupolar component of the magnetic fields generated by stellar dynamos.  相似文献   
938.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   
939.
The submerged vegetation of Lakes Sumner, Marion, Katrine, Taylor, and Sheppard was surveyed in May 1987. These high‐altitude lakes lie at c. 600 m a.s.l., within the largely unmodified upper Hurunui catchment. Submerged vegetation was diverse and included numerous short shallow‐water species, dense swards of Isoetes alpinus, low covers of taller native vascular plants, and charophyte meadows beyond the depth limit of vascular plants to a maximum of 15 m. A sparse deepwater bryophyte community was observed from 11 to 32 m depth in Lake Sumner. Displacement of native vegetation by dense growths of the adventive oxygen weed Elodea canadensis over mid‐depths of 3–6 m was noted in all lakes, except Lake Marion.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号