首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2393篇
  免费   91篇
  国内免费   19篇
测绘学   62篇
大气科学   240篇
地球物理   547篇
地质学   735篇
海洋学   243篇
天文学   453篇
综合类   1篇
自然地理   222篇
  2023年   11篇
  2022年   13篇
  2021年   36篇
  2020年   36篇
  2019年   33篇
  2018年   47篇
  2017年   50篇
  2016年   70篇
  2015年   51篇
  2014年   80篇
  2013年   120篇
  2012年   65篇
  2011年   141篇
  2010年   93篇
  2009年   134篇
  2008年   110篇
  2007年   107篇
  2006年   112篇
  2005年   90篇
  2004年   76篇
  2003年   96篇
  2002年   69篇
  2001年   64篇
  2000年   58篇
  1999年   43篇
  1998年   36篇
  1997年   32篇
  1996年   35篇
  1995年   31篇
  1994年   34篇
  1993年   32篇
  1992年   25篇
  1991年   30篇
  1990年   23篇
  1989年   16篇
  1988年   23篇
  1987年   24篇
  1986年   21篇
  1985年   43篇
  1984年   43篇
  1983年   36篇
  1982年   37篇
  1981年   21篇
  1980年   26篇
  1979年   29篇
  1978年   18篇
  1977年   13篇
  1975年   8篇
  1974年   10篇
  1973年   9篇
排序方式: 共有2503条查询结果,搜索用时 10 毫秒
381.
Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near‐surface unconsolidated aquifers that uses small‐diameter, low‐cost wells installed with direct‐push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north‐central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low‐cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near‐surface unconsolidated aquifers.  相似文献   
382.
Littlefield Springs discharge about 1.6 m3/s along a 10‐km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post‐1950s) seepage from the Virgin River. While corrected 14C apparent ages range from 1 to 9 ka, large amounts of nucleogenic 4He and low 3He/4He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high‐altitude recharge is supported by relatively cool noble‐gas recharge temperatures and isotopically depleted δ2H and δ18O. Excess (crustal) SF6 and 4He precluded dating of the modern component of water from Littlefield Springs using SF6 and 3H/3He methods. Assuming a lumped‐parameter model with a binary mixture of two piston‐flow components, Cl?/Br?, Cl?/F?, δ2H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30‐year groundwater travel time for Virgin River seepage to re‐emerge at Littlefield Springs. This suggests that removal of high‐salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.  相似文献   
383.
384.
Recent research developed and experimentally validated a self‐centering buckling‐restrained brace (SC‐BRB) that employs a restoring mechanism created using concentric tubes held flush with pretensioned shape memory alloy rods, in conjunction with a buckling‐restrained brace (BRB) that dissipates seismic energy. The present computational study investigated how the SC‐BRB can be implemented in real buildings to improve seismic performance. First, a computational brace model was developed and calibrated against experimental data, including the definition of a new cyclic material model for superelastic NiTi shape memory alloy. A parametric study were then conducted to explore the design space for SC‐BRBs. Finally, a set of prototype buildings was designed and computationally subjected to a suite of ground motions. The effect of the lateral resistance of gravity framing on self‐centering was also examined. From the component study, the SC‐BRB was found to dissipate sufficient energy even with large self‐centering ratios (as large as 4) based on criteria found in the literature for limiting peak drifts. From the prototype building study, a SC‐BRB self‐centering ratio of 0.5 was capable of reliably limiting residual drifts to negligible values, which is consistent with a dynamic form of self‐centering discussed in the literature. Because large self‐centering ratios can create significant overstrength, the most efficient SC‐BRB frame designs had a self‐centering ratio in the range of 0.5–1.5. Ambient building resistance (e.g., gravity framing) was found to reduce peak drifts, but had a negligible effect on residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
385.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
386.
The Classic Period Migration Project involves the analysis of archaeological sites at Perry Mesa in central Arizona and resulted in the discovery of several small marekanite1 obsidian artifacts that signaled a previously unlocated source. The source was eventually located in the Topaz Basin area of the upper Cienega Creek stream basin, southwest of Camp Verde, Arizona.2 While this locality solves the “unknown” sources in the Perry Mesa archaeological assemblage, it has not appeared in the archaeological record of Arizona with any frequency. The glass itself is an excellent medium for tool production, so its near absence in the archaeological record is likely attributable to social/territorial causes as well as limited secondary deposition, and along with other “minor” sources points to the archaeological utility of understanding these smaller sources. © 2009 Wiley Periodicals, Inc.  相似文献   
387.
James Baer  Steven R. Chesley 《Icarus》2011,212(1):438-447
In calculating the orbit of a minor planet with a least-squares algorithm, current practice is to assume that all observations of a given era have the same uncertainty, and that the errors in these observations are uncorrelated. These assumptions are unrealistic; and they lead to sub-optimal orbits.Our objective is to develop and validate an observational error model that provides realistic estimates of the uncertainties and correlations in asteroid observations. When used to populate the covariance matrix of the least-squares algorithm, the resulting orbits are shown to more accurately and precisely represent asteroid trajectories.  相似文献   
388.
We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar?Cheliospheric?Cplanetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March??C?16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth??s mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.  相似文献   
389.
Book review     
Geotechnical Aspects of Coastal and Offshore Structures. Edited by Yudhair and A. S. Balasubramaniam. Proceedings of the Symposium on Geotechnical Aspects of Coastal and Offshore Structures, Bangkok, December 14–18,1981. Rotterdam: A. A. Balkema, 1983. 280 pp. $40.00.

The Seaside Naturalist: A Guide to Nature Study at the Seashore. Written and illustrated by D. A. Coulombe. Englewood Cliffs, N.J.: Prentice‐Hall, Inc., 1984. 246 pp. $12.95.

Ichnology, Trace Fossils in Sedimentology and Stratigraphy. By A. A. Ekdale, R. G. Bromley, and S. G. Pemberton. Society of Economic Paleontologists and Mineralogists, Short Course No. 15. Tulsa, Okla.: S.E.P.M., 1984. 317 pp. S.E.P.M. members, $16.00; non‐members, $20.00.  相似文献   
390.
A field survey of zooplankton communities was carried out in 32 recently established tropical semi-arid reservoirs in the highlands of Northern Ethiopia with the aim to identify to what extent environmental factors determine species composition of the cladoceran community in such isolated and young reservoirs. To address seasonal variation, the survey was carried out both at the beginning and the end of the dry season. A total of 15 species of cladocerans were identified. Daphnia was the most abundant cladoceran genus, and was present in all reservoirs. Using presence-absence data, no association between cladoceran community composition and geographic distance was found. RDA results indicate that the set of environmental variables that explained cladoceran community composition differed among seasons. Depth, altitude and fish biomass showed a significant association with cladoceran community composition during the wet season, whereas variation in cladoceran community structure was associated with phytoplankton biomass in the dry season. The relative abundance of Daphnia was much higher in the pelagic than in the littoral zone of our study systems. Two key groups of pelagic filter-feeding cladocerans, Diaphanosoma and Daphnia, showed a clear pattern, in which one or the other tended to strongly dominate the community. In addition, we observed a negative association between dominance of Daphnia in the zooplankton community and dominance of cyanobacteria in the phytoplankton community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号