全文获取类型
收费全文 | 1488篇 |
免费 | 38篇 |
国内免费 | 13篇 |
专业分类
测绘学 | 30篇 |
大气科学 | 166篇 |
地球物理 | 361篇 |
地质学 | 448篇 |
海洋学 | 127篇 |
天文学 | 269篇 |
综合类 | 2篇 |
自然地理 | 136篇 |
出版年
2023年 | 11篇 |
2022年 | 9篇 |
2021年 | 29篇 |
2020年 | 27篇 |
2019年 | 27篇 |
2018年 | 38篇 |
2017年 | 36篇 |
2016年 | 48篇 |
2015年 | 32篇 |
2014年 | 55篇 |
2013年 | 70篇 |
2012年 | 42篇 |
2011年 | 82篇 |
2010年 | 65篇 |
2009年 | 90篇 |
2008年 | 73篇 |
2007年 | 67篇 |
2006年 | 65篇 |
2005年 | 61篇 |
2004年 | 43篇 |
2003年 | 67篇 |
2002年 | 31篇 |
2001年 | 30篇 |
2000年 | 35篇 |
1999年 | 24篇 |
1998年 | 18篇 |
1997年 | 18篇 |
1996年 | 18篇 |
1995年 | 16篇 |
1994年 | 17篇 |
1993年 | 18篇 |
1992年 | 16篇 |
1991年 | 14篇 |
1990年 | 11篇 |
1989年 | 8篇 |
1988年 | 10篇 |
1987年 | 13篇 |
1986年 | 15篇 |
1985年 | 22篇 |
1984年 | 25篇 |
1983年 | 25篇 |
1982年 | 27篇 |
1981年 | 12篇 |
1980年 | 23篇 |
1979年 | 14篇 |
1978年 | 12篇 |
1977年 | 6篇 |
1975年 | 4篇 |
1974年 | 5篇 |
1973年 | 4篇 |
排序方式: 共有1539条查询结果,搜索用时 31 毫秒
941.
Leah Meromy Noah P. Molotch Timothy E. Link Steven R. Fassnacht Robert Rice 《水文研究》2013,27(17):2383-2400
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
942.
Tristan D. Pearce James D. Ford Gita J. Laidler Barry Smit Frank Duerden Mishak Allarut Mark Andrachuk Steven Baryluk rew Dialla Pootoogoo Elee Annie Goose Theo Ikummaq Eric Joamie Fred Kataoyak Eric Loring Stephanie Meakin Scott Nickels Kip Shappa Jamal Shirley & Johanna Wandel 《Polar research》2009,28(1):10-27
Research on climate change impacts, vulnerability and adaptation, particularly projects aiming to contribute to practical adaptation initiatives, requires active involvement and collaboration with community members and local, regional and national organizations that use this research for policy-making. Arctic communities are already experiencing and adapting to environmental and socio-cultural changes, and researchers have a practical and ethical responsibility to engage with communities that are the focus of the research. This paper draws on the experiences of researchers working with communities across the Canadian Arctic, together with the expertise of Inuit organizations, Northern research institutes and community partners, to outline key considerations for effectively engaging Arctic communities in collaborative research. These considerations include: initiating early and ongoing communication with communities, and regional and national contacts; involving communities in research design and development; facilitating opportunities for local employment; and disseminating research findings. Examples of each consideration are drawn from climate change research conducted with communities in the Canadian Arctic. 相似文献
943.
Short‐term stream water temperature observations permit rapid assessment of potential climate change impacts 下载免费PDF全文
Peter Caldwell Catalina Segura Shelby Gull Laird Ge Sun Steven G. McNulty Maria Sandercock Johnny Boggs James M. Vose 《水文研究》2015,29(9):2196-2211
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long‐term datasets are available to evaluate changes over time. In this study, we demonstrate how simple monthly linear regression models based on short‐term historical Ts observations and readily available interpolated air temperature (Ta) estimates can be used for rapid assessment of historical and future changes in Ts. Models were developed for 61 sites in the southeastern USA using ≥18 months of observations and were validated at sites with longer periods of record. The Ts models were then used to estimate temporal changes in Ts at each site using both historical estimates and future Ta projections. Results suggested that the linear regression models adequately explained the variability in Ts across sites, and the relationships between Ts and Ta remained consistent over 37 years. We estimated that most sites had increases in historical annual mean Ts between 1961 and 2010 (mean of +0.11 °C decade?1). All 61 sites were projected to experience increases in Ts from 2011 to 2060 under the three climate projections evaluated (mean of +0.41 °C decade?1). Several of the sites with the largest historical and future Ts changes were located in ecoregions home to temperature‐sensitive fish species. This methodology can be used by resource managers for rapid assessment of potential climate change impacts on stream water temperature. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
944.
Christopher S. Lowry Jeffrey S. Deems Steven P. Loheide II Jessica D. Lundquist 《水文研究》2010,24(20):2821-2833
Quantifying snowmelt‐derived fluxes at the watershed scale within hillslope environments is critical for investigating local meadow scale groundwater dynamics in high elevation riparian ecosystems. In this article, we investigate the impact of snowmelt‐derived groundwater flux from the surrounding hillslopes on water table dynamics in Tuolumne Meadows, which is located in the Sierra Nevada Mountains of California, USA. Results show water levels within the meadow are controlled by a combination of fluxes at the hillslope boundaries, snowmelt within the meadow and changes in the stream stage. Observed water level fluctuations at the boundaries of the meadow show the hydrologic connection and subsequent disconnection between the hillslope and meadow aquifers. Timing of groundwater flux entering the meadow as a result of spring snowmelt can vary over 20 days based on the location, aspect, and local geology of the contributing area within the larger watershed. Identifying this temporal and spatial variability in flux entering the meadow is critical for simulating changes in water levels within the meadow. Model results can vary significantly based on the temporal and spatial scales at which watershed processes are linked to local processes within the meadow causing errors when boundary fluxes are lumped in time or space. Without a clear understanding of the surrounding hillslope hydrology, it is difficult to simulate groundwater dynamics within high elevation riparian ecosystems with the accuracy necessary for understanding ecosystem response. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
945.
Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives. 相似文献
946.
947.
Gil Penha-Lopes Steven Bouillon Perrine Mangion Adriano Macia Jos Paula 《Estuarine, Coastal and Shelf Science》2009,84(3):318-325
Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5–10 m apart showed some variation (−21.2‰ to −23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell height, T. palustris individuals start occupying microhabitats nearer the mangrove trees characterized by large densities of pneumatophores and litter, as well as sediments of smaller grain size, leading to higher organic matter availability in the sediment. 相似文献
948.
David J. Kratzmann Steven Carey Roberto Scasso Jose-Antonio Naranjo 《Bulletin of Volcanology》2009,71(4):477-439
The August 1991 eruptions of Hudson volcano produced ~2.7 km3 (dense rock equivalent, DRE) of basaltic to trachyandesitic pyroclastic deposits, making it one of the largest historical
eruptions in South America. Phase 1 of the eruption (P1, April 8) involved both lava flows and a phreatomagmatic eruption
from a fissure located in the NW corner of the caldera. The paroxysmal phase (P2) began several days later (April 12) with
a Plinian-style eruption from a different vent 4 km to the south-southeast. Tephra from the 1991 eruption ranges in composition
from basalt (phase 1) to trachyandesite (phase 2), with a distinct gap between the two erupted phases from 54–60 wt% SiO2. A trend of decreasing SiO2 is evident from the earliest part of the phase 2 eruption (unit A, 63–65 wt% SiO2) to the end (unit D, 60–63 wt% SiO2). Melt inclusion data and textures suggest that mixing occurred in magmas from both eruptive phases. The basaltic and trachyandesitic
magmas can be genetically related through both magma mixing and fractional crystallization processes. A combination of observed
phase assemblages, inferred water content, crystallinity, and geothermometry estimates suggest pre-eruptive storage of the
phase 2 trachyandesite at pressures between ~50–100 megapascal (MPa) at 972 ± 26°C under water-saturated conditions (log fO2 –10.33 (±0.2)). It is proposed that rising P1 basaltic magma intersected the lower part of the P2 magma storage region between
2 and 3 km depth. Subsequent mixing between the two magmas preferentially hybridized the lower part of the chamber. Basaltic
magma continued advancing towards the surface as a dyke to eventually be erupted in the northwestern part of the Hudson caldera.
The presence of tachylite in the P1 products suggests that some of the magma was stalled close to the surface (<0.5 km) prior
to eruption. Seismicity related to magma movement and the P1 eruption, combined with chamber overpressure associated with
basalt injection, may have created a pathway to the surface for the trachyandesite magma and subsequent P2 eruption at a different
vent 4 km to the south-southeast.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
949.
Mantle thermal structure and active upwelling during continental breakup in the North Atlantic 总被引:4,自引:0,他引:4
W.Steven Holbrook H.C. Larsen J. Korenaga T. Dahl-Jensen I.D. Reid P.B. Kelemen J.R. Hopper G.M. Kent D. Lizarralde S. Bernstein R.S. Detrick 《Earth and Planetary Science Letters》2001,190(3-4):251-266
Seismic reflection and refraction data acquired on four transects spanning the Southeast Greenland rifted margin and Greenland–Iceland Ridge (GIR) provide new constraints on mantle thermal structure and melting processes during continental breakup in the North Atlantic. Maximum igneous crustal thickness varies along the margin from >30 km in the near-hotspot zone (<500 km from the hotspot track) to 18 km in the distal zone (500–1100 km). Magmatic productivity on summed conjugate margins of the North Atlantic decreases through time from 1800±300 to 600±50 km3/km/Ma in the near-hotspot zone and from 700±200 to 300±50 km3/km/Ma in the distal zone. Comparison of our data with the British/Faeroe margins shows that both symmetric and asymmetric conjugate volcanic rifted margins exist. Joint consideration of crustal thickness and mean crustal seismic velocity suggests that along-margin changes in magmatism are principally controlled by variations in active upwelling rather than mantle temperature. The thermal anomaly (ΔT) at breakup was modest (100–125°C), varied little along the margin, and transient. Data along the GIR indicate that the potential temperature anomaly (125±50°C) and upwelling ratio (4 times passive) of the Iceland hotspot have remained roughly constant since 56 Ma. Our results are consistent with a plume–impact model, in which (1) a plume of radius 300 km and ΔT of 125°C impacted the margin around 61 Ma and delivered warm material to distal portions of the margin; (2) at breakup (56 Ma), the lower half of the plume head continued to feed actively upwelling mantle into the proximal portion of the margin; and (3) by 45 Ma, both the remaining plume head and the distal warm layer were exhausted, with excess magmatism thereafter largely confined to a narrow (<200 km radius) zone immediately above the Iceland plume stem. Alternatively, the warm upper mantle layer that fed excess magmatism in the distal portion of the margin may have been a pre-existing thermal anomaly unrelated to the plume. 相似文献
950.
2010年智利马乌莱MW8.8地震发生在纳斯卡板块与南美板块的板块边界处,引起了显著的同震和震后效应.GPS台网数据显示记录到的同震海向位移最大约5 m,垂向沉降最大约50 cm.在经过对俯冲效应、季节变化等效应的校正后,震后6年的海向最大位移约68 cm,垂向抬升最大约20 cm.马乌莱地震显著的震后形变对该区域的地... 相似文献