首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57479篇
  免费   1412篇
  国内免费   500篇
测绘学   1637篇
大气科学   4664篇
地球物理   11942篇
地质学   19592篇
海洋学   4738篇
天文学   12862篇
综合类   299篇
自然地理   3657篇
  2020年   378篇
  2019年   401篇
  2018年   1558篇
  2017年   1408篇
  2016年   1413篇
  2015年   920篇
  2014年   1345篇
  2013年   2673篇
  2012年   1825篇
  2011年   2054篇
  2010年   1628篇
  2009年   2155篇
  2008年   1989篇
  2007年   1974篇
  2006年   1896篇
  2005年   2565篇
  2004年   2697篇
  2003年   2271篇
  2002年   1607篇
  2001年   1342篇
  2000年   1252篇
  1999年   1168篇
  1998年   1092篇
  1997年   1099篇
  1996年   880篇
  1995年   861篇
  1994年   816篇
  1993年   765篇
  1992年   740篇
  1991年   703篇
  1990年   808篇
  1989年   706篇
  1988年   675篇
  1987年   774篇
  1986年   644篇
  1985年   850篇
  1984年   976篇
  1983年   937篇
  1982年   881篇
  1981年   842篇
  1980年   756篇
  1979年   718篇
  1978年   709篇
  1977年   648篇
  1976年   609篇
  1975年   533篇
  1974年   610篇
  1973年   606篇
  1972年   365篇
  1971年   338篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
931.
932.
933.
934.
935.
936.
937.
938.
Many Gulf of Mexico estuaries have low ratios of water volume to bottom surface area, and benthic processes in these systems likely have a major influence on system structure and function. The purpose of this study was to determine the spatiotemporal distribution of biomass and community composition of subtidal benthic microalgal (BMA) communities in Galveston Bay, TX, USA, compare BMA community composition and biomass to phytoplankton in overlying waters, and estimate the potential contribution of BMA to the trophodynamics in this shallow, turbid, subtropical estuary. The estimates of BMA biomass (mean = 4.21 mg Chl a m−2) for Galveston Bay were within the range of the reported values for similar Gulf of Mexico estuaries. BMA biomass in the central part of the bay was essentially homogeneous, whereas biomass at the seaward and upper bay ends of the transect were significantly lower. Peridinin, fucoxanthin, and alloxanthin were the three carotenoids with the highest concentrations, with fucoxanthin having the highest mean concentration (1.82 mg m−2). The seaward and landward ends of the transect differed from the central region of the bay with respect to the relative abundances of chlorophytes, cyanobacteria, and photosynthetic bacteria. Benthic microalgal community composition also showed a gradual shift over time due to changes in the relative abundances of photosynthetic bacteria, cryptophytes, dinoflagellates, and cyanobacteria. Major changes in community composition occurred in the spring months (March to April). On an areal basis, BMA biomass in Galveston Bay occurred at minor concentrations (16.5%) relative to phytoplankton. Furthermore, the concentrations of carotenoid pigments for phytoplankton and BMA (fucoxanthin, alloxanthin, and zeaxanthin) were correlated (r = 0.48 to 0.61), suggesting a close linkage between microalgae in the water column and sediments. The contribution of BMA to the primary productivity of the deeper waters (>2 m) of Galveston Bay is probably very small in comparison to shallower waters along the bay margins. The significant similarities in the community composition of phytoplankton and BMA illustrate the potential importance of deposition and resuspension processes in this turbid, shallow estuary.  相似文献   
939.
Although the supply and fate of suspended sediment is of fundamental importance to the functioning and morphological evolution of muddy estuaries, reliable sediment budgets have been established in only a few cases. Especially for smaller estuaries, inadequate bathymetric surveys and a lack of intertidal sedimentation data often preclude estimation of the sediment budget from morphological change, while instrument-derived residual fluxes typically lie well within the errors associated with measurement of much larger gross tidal transports. Given suitably long-term records of continuously monitored suspended sediment concentration (SSC), however, analysis of the major scales of variation in sediment transport and their relation to hydrodynamic and meteorological forcing permits qualitative testing of hypotheses suggested by directly measured residual fluxes. This paper analyzes data from a 1-year acoustic Doppler profiler deployment in the Blyth estuary, a muddy mesotidal barrier-enclosed system on the UK east coast. Flux calculations indicate a small sediment import equivalent to just 1.5% of the gross flood tide transport. Little confidence can be assigned to either the magnitude or direction of such a small residual when considered in isolation. However, the inference that the sediment regime is finely balanced is qualitatively supported by the close similarity between flood-tide and ebb-tide SSC values. Singular spectrum analysis of the SSC time series shows the expectedly large contributions to the variance in SSC at intratidal and subtidal (semimonthly and monthly) scales but also picks out intermittent variability that is initially attributed to a combination of non-tidal surge and wind stress forcing. Closer examination of the data through cross-correlograms and event-scale analysis indicates that local meteorological forcing is the major factor. Acting through the resuspension of intertidal mudflat sediments at times of strong westerlies, meteorological forcing is directly implicated in episodic sediment export from the estuary. Thresholding of tide-averaged fluxes using a range of critical wind stress values further indicates that ‘tide-dominated’ (i.e., low wind stress) and ‘wave-dominated’ (high wind stress) conditions are associated with sediment import and export. Sediment balance is potentially sensitive to the frequency of high wind stress events, since the associated sediment exports are several times larger than the average import under calm conditions. Intermittent meteorological forcing may thus exert an important control on the sedimentary balance of otherwise tidally dominated muddy estuarine systems, and the role of wind climate should not be overlooked in studies of estuary response to environmental change.  相似文献   
940.
Rare earth elements (REE) have been mined in North America since 1885, when placer monazite was produced in the southeast USA. Since the 1960s, however, most North American REE have come from a carbonatite deposit at Mountain Pass, California, and most of the world’s REE came from this source between 1965 and 1995. After 1998, Mountain Pass REE sales declined substantially due to competition from China and to environmental constraints. REE are presently not mined at Mountain Pass, and shipments were made from stockpiles in recent years. Chevron Mining, however, restarted extraction of selected REE at Mountain Pass in 2007. In 1987, Mountain Pass reserves were calculated at 29 Mt of ore with 8.9% rare earth oxide based on a 5% cut‐off grade. Current reserves are in excess of 20 Mt at similar grade. The ore mineral is bastnasite, and the ore has high light REE/heavy REE (LREE/HREE). The carbonatite is a moderately dipping, tabular 1.4‐Ga intrusive body associated with ultrapotassic alkaline plutons of similar age. The chemistry and ultrapotassic alkaline association of the Mountain Pass deposit suggest a different source than that of most other carbonatites. Elsewhere in the western USA, carbonatites have been proposed as possible REE sources. Large but low‐grade LREE resources are in carbonatite in Colorado and Wyoming. Carbonatite complexes in Canada contain only minor REE resources. Other types of hard‐rock REE deposits in the USA include small iron‐REE deposits in Missouri and New York, and vein deposits in Idaho. Phosphorite and fluorite deposits in the USA also contain minor REE resources. The most recently discovered REE deposit in North America is the Hoidas Lake vein deposit, Saskatchewan, a small but incompletely evaluated resource. Neogene North American placer monazite resources, both marine and continental, are small or in environmentally sensitive areas, and thus unlikely to be mined. Paleoplacer deposits also contain minor resources. Possible future uranium mining of Precambrian conglomerates in the Elliott Lake–Blind River district, Canada, could yield by‐product HREE and Y. REE deposits occur in peralkaline syenitic and granitic rocks in several places in North America. These deposits are typically enriched in HREE, Y, and Zr. Some also have associated Be, Nb, and Ta. The largest such deposits are at Thor Lake and Strange Lake in Canada. A eudialyte syenite deposit at Pajarito Mountain in New Mexico is also probably large, but of lower grade. Similar deposits occur at Kipawa Lake and Lackner Lake in Canada. Future uses of some REE commodities are expected to increase, and growth is likely for REE in new technologies. World reserves, however, are probably sufficient to meet international demand for most REE commodities well into the 21st century. Recent experience shows that Chinese producers are capable of large amounts of REE production, keeping prices low. Most refined REE prices are now at approximately 50% of the 1980s price levels, but there has been recent upward price movement for some REE compounds following Chinese restriction of exports. Because of its grade, size, and relatively simple metallurgy, the Mountain Pass deposit remains North America’s best source of LREE. The future of REE production at Mountain Pass is mostly dependent on REE price levels and on domestic REE marketing potential. The development of new REE deposits in North America is unlikely in the near future. Undeveloped deposits with the most potential are probably large, low‐grade deposits in peralkaline igneous rocks. Competition with established Chinese HREE and Y sources and a developing Australian deposit will be a factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号