首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51504篇
  免费   703篇
  国内免费   349篇
测绘学   1371篇
大气科学   4002篇
地球物理   9772篇
地质学   17142篇
海洋学   4358篇
天文学   12387篇
综合类   111篇
自然地理   3413篇
  2020年   374篇
  2019年   393篇
  2018年   899篇
  2017年   843篇
  2016年   1118篇
  2015年   751篇
  2014年   1226篇
  2013年   2552篇
  2012年   1180篇
  2011年   1632篇
  2010年   1508篇
  2009年   2025篇
  2008年   1864篇
  2007年   1860篇
  2006年   1775篇
  2005年   1621篇
  2004年   1588篇
  2003年   1493篇
  2002年   1432篇
  2001年   1274篇
  2000年   1213篇
  1999年   1154篇
  1998年   1088篇
  1997年   1087篇
  1996年   873篇
  1995年   862篇
  1994年   816篇
  1993年   765篇
  1992年   742篇
  1991年   697篇
  1990年   800篇
  1989年   701篇
  1988年   674篇
  1987年   771篇
  1986年   644篇
  1985年   850篇
  1984年   977篇
  1983年   937篇
  1982年   881篇
  1981年   841篇
  1980年   753篇
  1979年   718篇
  1978年   708篇
  1977年   647篇
  1976年   606篇
  1975年   529篇
  1974年   610篇
  1973年   605篇
  1972年   365篇
  1971年   338篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
We establish limits on the total radiant energy of solar flares during the period 1980 February – November, using the solar-constant monitor (ACRIM) on board the Solar Maximum Mission. Typical limits amount to 6 × 1029 erg/s for a 32-second integration time, with 5σ statistical significance, for an impulsive emission; for a gradual component, about 4 × 1032 ergs total radiant energy. The limits lie about an order of magnitude higher than the total radiant energy estimated from the various known emission components, suggesting that no heretofore unknown dominant component of flare radiation exists.  相似文献   
102.
A sample of flares detected in 1980 with the Bent Crystal Spectrometer and the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission satellite has been analysed to study the upward motions of part of the soft X-ray emitting plasma. These motions are inferred from the presence of secondary blue-shifted lines in the Ca XIX and Fe XXV spectral regions during the impulsive phase of disk flares. Limb flares do not show such blue-shifted lines indicating that the direction of the plasma motion is mainly radial and outward. The temporal association of these upward motions with the rise of the thermal phase and with the impulsive hard X-ray burst, as well as considerations of the plasma energetics, favour the interpretation of this phenomenon in terms of chromospheric evaporation. The two measureable parameters of the evaporating plasma, emission measure and velocity, depend on parameters related to the energy deposition and to the thermal phase. The evaporation velocity is found to be correlated with the spectral index of the hard X-ray flux and with the rise time of the thermal emission measure of the coronal plasma. The emission measure of the rising plasma is found to be correlated with the total energy deposited by the fast electrons in the chromosphere by collisions during the impulsive phase and with the maximum emission measure of the coronal plasma.  相似文献   
103.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   
104.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   
105.
G. R. Isaak 《Solar physics》1983,82(1-2):235-235
The size of the rotational splitting recently observed (Claverie et al., 1981) is correlated with the 12.2d variation in the measurements of solar oblateness observed by Dicke (1976) and implies a convection zone of depth of 0.1 R . The near equality of amplitudes of global velocity oscillations (Claverie et al., 1981) of the various m components of the l = 1 and l = 2 modes as seen from the Earth viewing the Sun nearly along the equator is unexpected for pure rotational splitting. It is suggested that a magnetic perturbation is present and an oblique asymmetric magnetic rotator with magnetic fields of a few million gauss is responsible. A more detailed account was submitted to Nature.Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.  相似文献   
106.
Using plane wave theory and assuming a given input wavelet the shape of the reflected (or transmitted) wavelet from a layered boundary is derived. Several types of boundaries are considered, among them the weathered layer and a wedge shaped intermediate layer. Different angles of incidence and all internal multiples are taken into account. The examples shown in the figures can be used for a direct comparison between theoretical and observed shapes of reflected (or transmitted) wavelets from special boundaries.  相似文献   
107.
108.
109.
110.
The following points are discussed:
(i)  The dependence of the angular velocity, , on the spatial coordinates near the lower boundary, R c, of the solar convection zone (SCZ) can be obtained from an integration with respect to r of a sound approximation to the azimuthal equation of motion. Here P 2 (cos ) is the second-order Legendre polynomial and is the polar angle. Estimates of 0, 2 (the primes denote derivatives with respect to r), based on the best available values for the Reynolds stresses and anisotropic viscosity coefficients, suggest that 0 < 0,=">2 0 for r = R c. Since a reliable theory of anisotropic turbulent coefficients does not exist at present, positive values of 0 are conceivable.
(ii)  In the lower SCZ the latitudinal variations of the superadiabatic gradient vanish if is constant along cylinders. The uniformity of the superadiabatic gradient is, however, inconsequential: the physically meaningful rotation law is the one that insures the uniformity of the convective flux.
(iii)  With the exception of the polar regions, the angular momentum transport in thin azimuthal convective rolls is towards the equator.
(iv)  It is suggested that buoyancy uncorrelates horizontally separated regions in the lower SCZ preventing the generation of magnetic fields with small wave numbers: in consequence, the cycle magnetic field must be generated in a region of weak buoyancy whereas the lower SCZ generates a weak rather stochastic magnetic field. The dependence on rotation of these two types of magnetic field could differ.
(v)  In the context of helioseismology it is customary to expand the perturbations (induced by rotation) of the eigenfrequencies in the following form: , where the notation is standard. The observations reveal that to a good approximation a 1 is independent of l. It is shown that this is the case if is constant with r. For a simple viscous, rotating fluid in the steady state (r) is constant with r if the angular momentum loss vanishes. Let J(ri dr) be the angular momentum of a thin shell of radius r and thickness dr. Since , the constancy of (r) implies that each shell of radius r has the same angular momentum as if the Sun were rotating uniformly with an angular velocity given by . It is discussed whether, alternatively, the observations simply indicate that 0(r) is a slowly varying function of r.
Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号