首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
大气科学   2篇
地球物理   2篇
地质学   1篇
天文学   29篇
  2018年   2篇
  2016年   4篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
21.
Solar activity alternates between active and quiet phases with an average period of 11?years, and this is known as the Schwabe cycle. Additionally, solar activity occasionally falls into a prolonged quiet phase (grand solar minimum), as represented by the Maunder Minimum in the 17th century, when sunspots were almost absent for 70?years and the length of the Schwabe cycle increased to 14?years. To examine the consistency of the cycle length characteristics during the grand solar minima, the carbon-14 contents in single-year tree rings were measured using an accelerator mass spectrometer as an index of the solar variability during the grand solar minimum of the 4th century BC. The signal of the Schwabe cycle was detected with a statistical confidence level of higher than 95?% by wavelet analysis. This is the oldest evidence for the Schwabe cycle at the present time, and the cycle length is considered to have increased to approximately 16?years during the grand solar minimum of the 4th century BC. This result confirms the association between the increase of the Schwabe cycle length and the weakening of solar activity, and indicates the possible prolonged absence of sunspots in the 4th century BC as during the Maunder Minimum. Theoretical implications from solar dynamo theory are discussed in order to identify the trigger of prolonged sunspot absence. A possible association between the long-term solar variation around the 4th century BC and terrestrial cooling in this period is also discussed.  相似文献   
22.
M. Lazar  S. Poedts 《Solar physics》2009,258(1):119-128
Electromagnetic instabilities in high-β plasmas, where β is the ratio of the kinetic plasma energy to the magnetic energy, have a broad range of astrophysical applications. The presence of temperature anisotropies T /T >1 (where and denote directions relative to the background magnetic field) in solar flares and the solar wind is sustained by the observations and robust acceleration mechanisms that heat plasma particles in the parallel direction. The surplus of parallel kinetic energy can excite either the Weibel-like instability (WI) of the ordinary mode perpendicular to the magnetic field or the firehose instability (FHI) of the circularly polarized waves at parallel propagation. The interplay of these two instabilities is examined. The growth rates and the thresholds provided by the kinetic Vlasov – Maxwell theory are compared. The WI is the fastest growing one with a growth rate that is several orders of magnitude larger than that of the FHI. These instabilities are however inhibited by the ambient magnetic field by introducing a temperature anisotropy threshold. The WI admits a larger anisotropy threshold, so that, under this threshold, the FHI remains the principal mechanism of relaxation. The criteria provided here by describing the interplay of the WI and FHI are relevant for the existence of these two instabilities in any space plasma system characterized by an excess of parallel kinetic energy.  相似文献   
23.
The continuous spectrum of a 2D magnetostatic equilibrium with y-invariance is derived. It is shown that the continuous spectrum is given by an eigenvalue problem on each magnetic surface and is related to the different behaviour of the equilibrium quantities in different magnetic surfaces. The special case of a uniform poloidal magnetic field in a 1D equilibrium that is stratified with height, has been considered in detail and it is found that there is no continuous spectrum. It is shown that this result relies completely on the artificial property that the behaviour of the equilibrium quantities along a magnetic field line is independent of the field line considered. As a consequence the non-existence of a continuous spectrum in a 1D equilibrium with a uniform magnetic field cannot be used to argue that the continuous spectrum has no physical relevance.Research Assistant of the Belgian National Fund for Scientific Research.  相似文献   
24.
25.
26.
N -body simulations are an important tool in the study of formation of large-scale structures. Much of the progress in understanding the physics of galaxy clustering and comparison with observations would not have been possible without N -body simulations. Given the importance of this tool, it is essential to understand its limitations as ignoring these can easily lead to interesting but unreliable results. In this paper, we study the limitations due to the finite size of the simulation volume. In an earlier work, we proposed a formalism for estimating the effects of a finite box size on physical quantities and applied it to estimate the effect on the amplitude of clustering, mass function. Here, we extend the same analysis and estimate the effect on skewness and kurtosis in the perturbative regime. We also test the analytical predictions from the earlier work as well as those presented in this paper. We find good agreement between the analytical models and simulations for the two-point correlation function and skewness. We also discuss the effect of a finite box size on relative velocity statistics and find the effects for these quantities scale in a manner that retains the dependence on the averaged correlation function     .  相似文献   
27.
28.
We analyze and discuss the properties of decameter spikes observed in July?–?August 2002 by the UTR-2 radio telescope. These bursts have a short duration (about one second) and occur in a narrow frequency bandwidth (50?–?70 kHz). They are chaotically located in the dynamic spectrum. Decameter spikes are weak bursts: their fluxes do not exceed 200?–?300 s.f.u. An interesting feature of these spikes is the observed linear increase of the frequency bandwidth with frequency. This dependence can be explained in the framework of the plasma mechanism that causes the radio emission, taking into account that Langmuir waves are generated by fast electrons within a narrow angle θ≈13°?–?18° along the direction of the electron propagation. In the present article we consider the problem of the short lifetime of decameter spikes and discuss why electrons generate plasma waves in limited regions.  相似文献   
29.
S. Poedts  M. Goossens 《Solar physics》1987,109(2):265-286
A first attempt is made to study the continuous spectrum of linear ideal MHD for 2D solar loops and to understand how 2D effects change the continuum eigenfrequencies and continuum eigenfunctions. The continuous spectrum is computed for 2D solar loops with purely poloidal magnetic fields and it is investigated how non-circularity of the cross-sections of the poloidal magnetic surfaces and variations of density along the poloidal magnetic field lines change the continuous spectrum and induce poloidal wave number coupling in the eigenfunctions. Approximate analytical results and numerical results are obtained for the eigenfrequencies and the eigenfunctions and the poloidal wave number coupling is clearly illustrated. It is found that the continuum frequencies are substantially increased, that the ranges of the continuum frequencies are considerably enlarged and that the derivatives of the continuum frequencies normal to the magnetic surfaces are substantially increased. The eigenfunctions are strongly influenced by poloidal wave number coupling. Implications of these findings for the heating mechanisms of resonant absorption and phase mixing are briefly considered.Research Assistant of the Belgian National Fund for Scientific Research.  相似文献   
30.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA’s Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号