排序方式: 共有46条查询结果,搜索用时 9 毫秒
41.
S. T. Wu W. P. Guo M. D. Andrews G. E. Brueckner R. A. Howard M. J. Koomen C. M. Korendyke D. J. Michels J. D. Moses D. G. Socker K. P. Dere P. L. Lamy A. Llebaria M. V. Bout R. Schwenn G. M. Simnett D. K. Bedford C. J. Eyles 《Solar physics》1997,175(2):719-735
We present a qualitative and quantitative comparison of a single coronal mass ejection (CME) as observed by LASCO (July 28–29,
1996) with the results of a three-dimensional axisymmetric time-dependent magnetohydrodynamic model of a flux rope interacting
with a helmet streamer. The particular CME considered was selected based on the appearance of a distinct ‘tear-drop’ shape
visible in animations generated from both the data and the model.
The CME event begins with the brightening of a pre-existing coronal streamer which evolves into a ‘tear-drop’ shaped loop
followed by a Y-shaped structure. The brightening moves slowly outward with significant acceleration reaching velocities of
∼450 km s-1 at 30 R⊙.
The observed CME characteristics are compared with the model results. On the basis of this comparison, we suggested that the
observed features were caused by the evacuation of a flux rope in the closed field region of the helmet streamer (i.e., helmet
dome). The flux rope manifests itself as the cavity of the quasi-static helmet streamer and the whole system becomes unstable
when the flux rope reaches a threshold strength. The observed ‘tear-drop’ structure is due to the deformed flux rope. The
leading edge of the flux rope interacts with the helmet dome to form the typical loop-like CME. The trailing edge of this
flux rope interacts with the local bi-polar field to form the observed Y-shaped structure. The model results for the evolution
of the magnetic-field configurations, velocity, and polarization brightness are directly compared with observations.
Animations have been generated from both the actual data and the model to illustrate the good agreement between the observation
and the model. These animations can be found on the CD-ROM which accompanies this volume.
Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004923016322 相似文献
42.
In 2001 the Ulysses spacecraft crossed the ecliptic plane near perihelion. The heliographic longitude with respect to the Earth was within ±20° of the west solar limb while it was ±15° of the ecliptic plane, which meant that coronal mass ejections seen off the solar west limb were likely to pass over Ulysses. On 10 May the largest >38 keV electron intensity of the mission, since the Jovian encounter in 1992, was observed, which was accompanied by a fast perpendicular shock. This event was preceded by a fast coronal mass ejection some two and a half days earlier which is the probable source of the shock. However, both the ACE spacecraft and Ulysses observed, simultaneously, an intense, prompt electron event on 7 May from a solar flare associated with earlier coronal mass ejections also observed off the west limb; Ulysses was magnetically connected to a longitude well behind the west limb. ACE did not observe any (at the 0.1% level) energetic electrons which were associated with the 10 May event seen at Ulysses. We discuss in detail the energetic particles seen at the two spacecraft during 7–11 May, with the objective of understanding the origin of the intense electron event seen on 10 May and the manner in which particles escaping from the shock populate the inner heliosphere. The energy spectrum of the ions at both ACE and Ulysses exhibits a maximum at around 400 keV; this form of the spectrum was seen at the shock itself. It appears that the strong shock driven by the fast coronal mass ejection is able to populate a large fraction of the inner heliosphere with accelerated ions. The shock-accelerated electrons do not pervade the inner heliosphere in the same manner as the ions. We suggest that the electron acceleration was enhanced by the presence of multiple coronal mass ejections. 相似文献
43.
Observations are reported of two multiple CME events which were detected on 2–3 June 1997 and 9–10 June 1998, using the LASCO instrument on board SOHO. Each event consists of a group of four related CMEs which emerge from progressively higher latitudes over a time period of approximately 16 hours. In both cases there is on-disk activity visible in EIT EUV images which involves bright emission along the south polar crown filament and there is also ejection of mass from other regions of the corona during the time period of each event. We present a multi-wavelength view of these events (i.e. white-light, H, EUV and, in the case of the 2–3 June 1997 event, soft X-ray), which suggest that ejection of mass from one point in the corona can lead to a destabilization of a previously stable structure and the further ejection of mass from different regions of the corona, in a systematic way. The observations also show that the CME phenomenon is not always a localised event but can occur on a global level; and that complex CME activity can arise at relatively quiet-Sun periods as evidenced by the lack of significant X-ray flares or radio signatures. 相似文献
44.
G. M. Simnett 《Solar physics》1983,86(1-2):289-299
High resolution X-ray images are used to study the temperature structure and evolution of two spatially resolved, but compact, solar flares. Both flares developed within a magnetic loop whose footpoints were separated by typically 15000 km, and involved primary energy release at one footpoint. This was followed by transfer of chromospheric material into and around the loop. The flares involved total energies differing by over an order of magnitude, and they follow different evolutionary paths because of this. 相似文献
45.
G. M. Simnett 《Solar physics》1986,106(1):165-183
The energetics of the onset of the impulsive phase of solar flares are examined on the premise that a single acceleration mechanism is operating in the corona. From considerations of recent observations of plasma turbulence and upflows, and nuclear gamma-rays it is concluded that a model where the bulk of the energy resides in a non-thermal electron beam with a low energy cut-off at 20–25 keV is incompatible with many of the observations. Conversely, a model where the bulk of the energy resides in non-thermal protons is consistent with the majority, if not all, of the observations. It is suggested that the bulk of the energy in the impulsive phase is initially transferred to 102–103 keV protons. Acceleration by a series of small shocks is an energy transfer mechanism which gives particles increments in velocity rather than energy and would naturally favour protons over electrons. An important consequence of this result is that the hard X-ray burst must be thermal. At this time the precise mechanism for thermal X-ray production is unclear; however recent theoretical plasma physics results have indicated promising avenues of research in this context. 相似文献
46.
The EUV Imaging Spectrometer for Hinode 总被引:1,自引:0,他引:1
J. L. Culhane L. K. Harra A. M. James K. Al-Janabi L. J. Bradley R. A. Chaudry K. Rees J. A. Tandy P. Thomas M. C. R. Whillock B. Winter G. A. Doschek C. M. Korendyke C. M. Brown S. Myers J. Mariska J. Seely J. Lang B. J. Kent B. M. Shaughnessy P. R. Young G. M. Simnett C. M. Castelli S. Mahmoud H. Mapson-Menard B. J. Probyn R. J. Thomas J. Davila K. Dere D. Windt J. Shea R. Hagood R. Moye H. Hara T. Watanabe K. Matsuzaki T. Kosugi V. Hansteen Ø. Wikstol 《Solar physics》2007,243(1):19-61
The EUV Imaging Spectrometer (EIS) on Hinode will observe solar corona and upper transition region emission lines in the wavelength ranges 170?–?210 Å and 250?–?290 Å. The line centroid positions and profile widths will allow plasma velocities and turbulent or non-thermal line broadenings to be measured. We will derive local plasma temperatures and densities from the line intensities. The spectra will allow accurate determination of differential emission measure and element abundances within a variety of corona and transition region structures. These powerful spectroscopic diagnostics will allow identification and characterization of magnetic reconnection and wave propagation processes in the upper solar atmosphere. We will also directly study the detailed evolution and heating of coronal loops. The EIS instrument incorporates a unique two element, normal incidence design. The optics are coated with optimized multilayer coatings. We have selected highly efficient, backside-illuminated, thinned CCDs. These design features result in an instrument that has significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2?–?5 s exposure times in the brightest lines. EIS can scan a field of 6×8.5 arc?min with spatial and velocity scales of 1 arc?sec and 25 km?s?1 per pixel. The instrument design, its absolute calibration, and performance are described in detail in this paper. EIS will be used along with the Solar Optical Telescope (SOT) and the X-ray Telescope (XRT) for a wide range of studies of the solar atmosphere. 相似文献