首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   0篇
  国内免费   5篇
大气科学   43篇
地球物理   17篇
地质学   81篇
海洋学   6篇
天文学   29篇
综合类   2篇
自然地理   6篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   9篇
  2017年   3篇
  2016年   2篇
  2015年   7篇
  2014年   10篇
  2013年   17篇
  2012年   9篇
  2011年   25篇
  2010年   13篇
  2009年   5篇
  2008年   4篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
  1962年   1篇
  1955年   1篇
  1952年   1篇
  1940年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
61.
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.  相似文献   
62.
The seasonal mean variability of the atmospheric circulation is affected by processes with time scales from less than seasonal to interannual or longer. Using monthly mean data from an ensemble of Atmospheric General Circulation Model (AGCM) realisations, the interannual variability of the seasonal mean is separated into intraseasonal, and slowly varying components. For the first time, using a recently developed method, the slowly varying component in multiple AGCM ensembles is further separated into internal and externally forced components. This is done for Southern Hemisphere 500?hPa geopotential height from five AGCMs in the CLIVAR International Climate of the Twentieth Century project for the summer and winter seasons. In both seasons, the intraseasonal and slow modes of variability are qualitatively well reproduced by the models when compared with reanalysis data, with a relative metric finding little overall difference between the models. The Southern Annular Mode (SAM) is by far the dominant mode of slowly varying internal atmospheric variability. Two slow-external modes of variability are related to El Ni?o-Southern Oscillation (ENSO) variability, and a third is the atmospheric response to trends in external forcing. An ENSO-SAM relationship is found in the model slow modes of variability, similar to that found by earlier studies using reanalysis data. There is a greater spread in the representation of model slow-external modes in winter than summer, particularly in the atmospheric response to external forcing trends. This may be attributable to weaker external forcing constraints on SH atmospheric circulation in winter.  相似文献   
63.
The Sierras Pampeanas in central and north-western Argentina constitute a distinct morphotectonic feature between 27°S and 33°S. The last stage of uplift and deformation in this area are interpreted to be closely related to the Andean flat-slab subduction of the Nazca plate beneath the South American plate. K–Ar fault gouge dating and low-temperature thermochronology along two transects within the Sierra de Comechingones reveal a minimum age for the onset of brittle deformation about 340 Ma, very low exhumation rates since Late Paleozoic time, as well as a total exhumation of about 2.3 km since the Late Cretaceous. New Ar–Ar ages (7.54–1.91 Ma) of volcanic rocks from the San Luis volcanic belt support the eastward propagation of the flat-slab magmatic front, confirming the onset of flat-slab related deformation in this region at 11.2 Ma. Although low-temperature thermochronology does not clearly constrain the signal of the Andean uplift, it is understood that the current structural relief related to the Comechingones range has been achieved after the exhumation of both fault walls (circa 80–70 Ma).  相似文献   
64.
65.
We introduce a method for the detailed interpretation of K–Ar illite fine-fraction ages of fault gouges from non-sedimentary host rocks. Ages are cross-evaluated with several independent parameters, e.g. illite crystallinity, illite polytype quantification, grain size, mineralogical observations, K–Ar muscovite and biotite host-rock cooling ages as well as low-temperature thermochronological data (AFT, AHe, ZHe). This interpretation approach is applied to a regional study in order to constrain the ‘deformation path’ of the Eastern Sierras Pampeanas in NW Argentina. In the course of this study, a large number of gouge-bearing fault zones were systematically sampled and analysed. Obtained K–Ar illite fine-fraction ages range from Devonian to Cretaceous times, documenting a long-lasting brittle fault activity in this region. Ages >320 Ma are synchronous with a period of intra-Carboniferous compressional tectonism, whereas Permo-Triassic ages are contemporaneous to a flat-slab subduction episode of the Farallon plate beneath the South American plate. Middle to Late Permian and Early Triassic ages as well as Early Jurassic to Middle Cretaceous ages correlate with extensional tectonics in this region. Additionally, K–Ar illite ages reveal a propagation of brittle deformation from north to south in the Sierras de Córdoba and San Luis. Data integrity and consistency with other chronometers and geological evidence show that the here suggested interpretation is valid and can provide a powerful tool to evaluate cooling and deformation histories. Despite of that, we could show that the reliability of fault gouge data strongly depends on the regional cooling.  相似文献   
66.
In Uruguay commercial granite varieties comprise mafic rocks, granitoids, and syenitoids. There is a long tradition in Uruguay, as well as worldwide, of using dimensional stones in architecture and art, specially granitic ones. Some of the present applications of these dimensional stones are as façade cladding, countertops, and outdoor and indoor floor slabs. The color spectrum of the Uruguayan granitic dimensional stones varies from black to light gray, covering a wide variety of red and pink and minor greenish-gray. The décor of these granitic dimensional stones is mainly determined by their fabric, fundamentally the grain size and the color distribution between the different minerals that compose the rocks. In the present research the most important commercial granites were sampled to analyze their petrography and petrophysical properties. A detailed structural analysis has been performed in several deposits, as well as the application of the software 3D Block Expert for modeling the possible raw block size distribution. Other factors controlling the mining viability of the deposits were also studied (e.g., homogeneity/heterogeneity of color and décor) and the possible reserves were calculated.  相似文献   
67.
The aspects of triangulation of Near Earth Asteroids by two arbitrarily positioned observers (one spaceborne and the other Earth-bound, as well as both spaceborne) are being investigated, and the resulting orbital elements are compared to those gained through common orbital determination and refinement techniques. The main advantages of the method proposed in this work are, that given the approximate position of an asteroid, high quality orbital elements can be acquired very rapidly using two observations only.  相似文献   
68.
Abstract– On April 9, 2009, at 3:00 CEST, a very bright fireball appeared over Carinthia and the Karavanke Mountains. The meteoroid entered the atmosphere at a very steep angle and disintegrated into a large number of objects. Two main objects were seen as separate fireballs up to an altitude of approximately 5 km, and witnesses reported loud explosions. Three stones were found with a total weight of approximately 3.611 kg. The measured activity of short‐lived cosmogenic radionuclides clearly indicates that two specimens result from a very recent meteorite fall. All cosmogenic radionuclide concentrations suggest a rather small preatmospheric radius of <20 cm; a nominal cosmic‐ray exposure age based on 21Ne is approximately 4 Ma, but the noble gas and radionuclide results in combination indicate a complex irradiation. Jesenice is a highly recrystallized rock with only a few relic chondrules visible in hand specimen and thin section. The texture, the large grain size of plagioclase, and the homogeneous compositions of olivines and pyroxenes clearly indicate that Jesenice is a L6 chondrite. The bulk composition of Jesenice is very close to the published average element concentration for L ordinary chondrites. The chondrite is weakly shocked (S3) as indicated by the undulatory extinction in olivine and plagioclase and the presence of planar fractures in olivine. Being weakly shocked and with gas retention ages of >1.7 Ga (4He) and approximately 4.3 Ga (40Ar), Jesenice seems not to have been strongly affected by the catastrophic disruption of the L‐chondrite parent body approximately 500 Ma ago.  相似文献   
69.
Two major earthquakes in Alaska, namely the 1964 Great Alaska Earthquake and the 2002 Denali Earthquake, occurred in winter seasons when the ground crust was frozen. None of the then-existing foundation types was able to withstand the force from the lateral spreading of frozen crust. This paper presents results from the analysis of pile foundations in frozen ground overlying liquefiable soil utilizing the Beam-on-Nonlinear-Winkler-Foundation (BNWF) (or p-y approach). P-multipliers were applied on traditional sandy soil p-y curves to simulate soil strength degradation during liquefaction. Frozen soil p-y curves were constructed based on a model proposed in a recent study and the frozen soil mechanical properties obtained from testing of naturally frozen soils. Pile response results from the p-y approach were presented along with those from fluid-solid coupled Finite Element (FE) modeling for comparison purpose. Finally, the sensitivity of pile response to frozen soil parameters was investigated and a brief discussion is presented.  相似文献   
70.
The effects of horizontal resolution and the treatment of convection on simulation of the diurnal cycle of precipitation during boreal summer are analyzed in several innovative weather and climate model integrations. The simulations include: season-long integrations of the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with explicit clouds and convection; year-long integrations of the operational Integrated Forecast System (IFS) from the European Centre for Medium-range Weather Forecasts at three resolutions (125, 39 and 16 km); seasonal simulations of the same model at 10 km resolution; and seasonal simulations of the National Center for Atmospheric Research (NCAR) low-resolution climate model with and without an embedded two-dimensional cloud-resolving model in each grid box. NICAM with explicit convection simulates best the phase of the diurnal cycle, as well as many regional features such as rainfall triggered by advancing sea breezes or high topography. However, NICAM greatly overestimates mean rainfall and the magnitude of the diurnal cycle. Introduction of an embedded cloud model within the NCAR model significantly improves global statistics of the seasonal mean and diurnal cycle of rainfall, as well as many regional features. However, errors often remain larger than for the other higher-resolution models. Increasing resolution alone has little impact on the timing of daily rainfall in IFS with parameterized convection, yet the amplitude of the diurnal cycle does improve along with the representation of mean rainfall. Variations during the day in atmospheric prognostic fields appear quite similar among models, suggesting that the distinctive treatments of model physics account for the differences in representing the diurnal cycle of precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号