首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
大气科学   1篇
地球物理   7篇
地质学   3篇
天文学   34篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
排序方式: 共有45条查询结果,搜索用时 46 毫秒
21.
The influence of different projectile and target characteristics on the mass and velocity of high-velocity (>1 km/s) ejecta from impact craters is investigated numerically. The problem of how the computation accuracy affects the resulting ejection velocity distribution is considered.  相似文献   
22.
Abstract— In the late Jurassic period, about 142 million years ago, an asteroid hit the shallow paleo‐Barents Sea, north of present‐day Norway. The geological structure resulting from the impact is today known as the Mjølnir crater. The present work attempts to model the generation and the propagation of the tsunami from the Mjølnir impact. A multi‐material hydrocode SOVA is used to model the impact and the early stages of tsunami generation, while models based on shallow‐water theories are used to study the subsequent wave propagation in the paleo‐Barents Sea. We apply several wave models of varying computational complexity. This includes both three‐dimensional and radially symmetric weakly dispersive and nonlinear Boussinesq equations, as well as equations based on nonlinear ray theory. These tsunami models require a reconstruction of the bathymetry of the paleo‐Barents Sea. The Mjølnir tsunami is characteristic of large bolides impacting in shallow sea; in this case the asteroid was about 1.6 km in diameter and the water depth was around 400 m. Contrary to earthquake‐ and slide‐generated tsunamis, this tsunami featured crucial dispersive and nonlinear effects: a few minutes after the impact, the ocean surface was formed into an undular bore, which developed further into a train of solitary waves. Our simulations indicate wave amplitudes above 200 m, and during shoaling the waves break far from the coastlines in rather deep water. The tsunami induced strong bottom currents, in the range of 30–90 km/h, which presumably caused a strong reworking of bottom sediments with dramatic consequences for the marine environment.  相似文献   
23.
The results of numerical simulations of the Eltanin impact are combined with the available geological data in order to reconstruct the impact dynamics and to get some constraints on the impact parameters. Numerical simulations show that the Eltanin projectile size should be less than 2 km for a 45° oblique impact and less than 1.5 km for a vertical impact. On the other hand, we demonstrate that the projectile diameter cannot be considerably smaller than 1 km; otherwise, the impact‐induced water flow cannot transport eroded sediments across large distances. The maximum displacement approximately equals the water crater radius and rapidly decreases with increasing distances. Numerical simulations also show that ejecta deposits strongly depend on impact angle and projectile size and, therefore, cannot be used for reliable estimates of the initial projectile mass. The initial amplitudes of tsunami‐like waves are estimated. The presence of clay‐rich sediments, typical for the abyssal basins in cores PS2709 and PS2708 on the Freeden Seamounts (Bellingshausen Sea, Southern Ocean) combined with numerical data allow us to suggest a probable point of impact to the east of the seamounts. The results do not exclude the possibility that a crater in the ocean bottom may exist, but such a structure has not been found yet.  相似文献   
24.
Izvestiya, Physics of the Solid Earth - Abstract—Mass industrial explosions on extended benches of open pits are the most effective way to crush rock. Such explosions are accompanied by the...  相似文献   
25.
Solar System Research - The results of numerical modeling of the vertical fall of ten-kilometer asteroids onto a solid surface and into an ocean with a depth of 1 to 7 km are presented. The...  相似文献   
26.
High-velocity comet and asteroid impacts onto the Moon are considered and the material masses ejected after such impacts at velocities above the second-cosmic velocity for the Moon (2.4 km/s) are calculated. Although the results depend on a projectile type and the velocity and angle of an impact, it has been demonstrated that, on average, the lunar mass decreases with time. The Moon has lost about 5 × 1018 kg, that is, about one-hundredth of a percent of its mass, over the last 3.8–3.9 billion years. The ejection of lunar meteorites and lunar dust, rich in 3He, is considered as well. The results of the study are compared to the results of earlier computations and data on lunar meteorites.  相似文献   
27.
Images of the dayglow of the Earth's atmosphere in the ultraviolet wavelength region obtained by the photometer of the spacecraft Dynamics Explorer revealed dark spots of the order of 50 km in diameter. These atmospheric holes were interpreted by the American physicist Frank as concentrations of water vapor formed as a result of the disintegration and vaporization of so-called small comets at high altitudes. An analysis of the same images showed that their explanation requires a frequency of comet collisions with the Earth as high as 20 events a minute! This sensational hypothesis evoked a heated scientific debate. The paper below contains an analysis of the possibility of observing Frank's hypothetical comets during their collisions with the Moon. By solving a two-dimensional radiative–gasdynamic problem, the authors demonstrate that the flashes occurring during such impacts can be observed from the Earth with ordinary telescopes.  相似文献   
28.
29.
This paper presents the results from the simulation of a phreatomagmatic eruption, in which the formation of the eruptive column is controlled by interaction between magma and water or ice. The process leads to intensive fragmentation of the magma and to mixing of ash and steam with ambient air. Such processes were typical of the initial phase in the April 2010 eruption of Eyjafjallajökull Volcano. It is hypothesized that phreatic explosions produce a dynamic pulsating system that consists of buoyant volumes of the mixture (thermals) that are forming at the base of the eruptive column. A 3-D simulation was used to assess two possible regimes in the evolution of the eruptive column: (1) continuous transport of the mixture into the eruptive column through its base for the case in which the thermals are generated at a high rate and (2) periodic flotation of the thermals whose diameters are comparable with that of the base of the eruptive column. It is shown that one can find a suitable selection of the initial concentrations of ash, steam, and air to achieve a satisfactory agreement between theory and actually observed heights of the gas–ash “clouds” that were formed during the Eyjafjallajökull eruption. The data for our calculations were taken from publications. We also investigated how wind and the changes in the initial parameters affect the process.  相似文献   
30.
Libyan Desert Glass contains meteoritic material and, therefore, its origin is most likely associated with an impact event. However, the impact crater has not been found. We performed numerical simulations of impacts of stony and cometary bodies in order to confirm the version that this glass was formed from silica heated by radiation from aerial bursts near the ground. Asteroids were treated as strengthless bodies from dunite with a density of 3.3 g cm?3, and comets as icy bodies with a density of 1 g cm?3. The simulations based on hydrodynamic equations included the equations of radiation transfer. Melting and vaporization of a silica target under action of radiation incident on a planar surface were modeled using a one‐dimensional hydrodynamic equation of energy and equations of radiation transfer in two‐flux approximation. We selected those variants of simulations in which a crater is not formed, a fireball touches the earth surface, and the area of a molten target corresponds to the area of the Libyan Desert Glass strewn field. Appropriate options include the impact of an asteroid with a diameter of 300 m, an entry speed of 35 km s?1, and an entry angle of 8°, and cometary bodies with diameters from 150 to 300 m, speeds of 50–70 km s?1, and entry angles from 15° to 45°. Impact options with crater formation are also discussed. The maximum depth of molten silica at ground zero reaches 10 cm with the cometary impacts and 3–4 cm with the asteroidal impact. Melting occurs during a period of time from 50 to 400 s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号