全文获取类型
收费全文 | 84篇 |
免费 | 2篇 |
国内免费 | 2篇 |
专业分类
大气科学 | 2篇 |
地球物理 | 10篇 |
地质学 | 19篇 |
海洋学 | 46篇 |
天文学 | 4篇 |
综合类 | 1篇 |
自然地理 | 6篇 |
出版年
2023年 | 1篇 |
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2013年 | 4篇 |
2011年 | 2篇 |
2010年 | 3篇 |
2009年 | 8篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有88条查询结果,搜索用时 15 毫秒
71.
Seasonal variation of the turbidity (suspended substance) has been investigated in Lake Biwa. During the last five years, vertical and horizontal distributions of water temperature, turbidity, electric conductivity and chlorophyll-a have been obtained both in the south basin and the southern part of the north basin of Lake Biwa. The benthic nepheloid layer (BNL) developed in the seasons of thermal stratification, and is not detectable in the non-stratification period (winter). The BNL is mainly maintained by the organic matter such as phytoplankton under decomposition. However, the turbidity in the nepheloid layer was much affected by the turbid water from rivers after heavy rainfall. In this case, the major component of the suspended substance (SS) in the nepheloid layer was inorganic soil. The particulate P concentration, which is originated from phytoplankton, also increased after a rain fall. This suggests that phytoplankton in the surface layer sinks with clay and silt coming through rivers. From summer to the end of the stratification period, another kind of turbidity appeared in the bottom layer. This is caused by the chemical reaction of manganese under the anoxic condition. The resuspension of bottom sediment by strong currents also occurred, but it is not a major process for maintaining the BNL. 相似文献
72.
73.
Shizuo Tsunogai Shuichi Watanabe Makio Honda Takafumi Aramaki 《Journal of Oceanography》1995,51(5):519-536
The importance of the North Pacific Intermediate Water as a sink for the anthropogenic carbon dioxide has been examined by mapping chemical and radiochemical properties at two isopycnal surfaces of of 26.6 ad 27.2 obtained in 1970's. Its radiocarbon contents in 1980's were determined for comparison. The isopleths of depth and salinity at the two isopycnal surfaces obviously show that the intermediate layer of the entire mid-latitudes of the North Pacific is occupied by a similar water mass. The distributions of dissolved oxygen contents and Si/N ratios in the intermediate water indicate its source in the northwestern North Pacific and its sink in the eastern Pacific. The 14C values clearly designate the intrusion of the artificial radiocarbon of mostly 1960's origin into the upper intermediate water of the western North Pacific having its maximum in the subarctic zone of 40–45°N and 160–180°E in 1973. The maximum region for tritium is much broader extending to the north. These suggest that the subboreal region is active in the gas exchange and/or the warm water residing for a long time at the surface and flowing into the region across the subarctic front sinks quickly in winter. At the lower isopycnal surface, the increase 14C value for 14±4 years was around 27, which is smaller than that expected from the total carbonate increase, indicating an active isopycnal mixing. 相似文献
74.
In the western subarctic North Pacific, a wind-driven cyclonic circulation, called the western subarctic gyre (WSAG), exists. We examined year-to-year changes of the gyre and hydrographic structures, applying the altimetry-based gravest empirical mode (AGEM) method to hydrographic and altimetric sea surface height (SSH) data, and relation to the in situ variation of the temperature minimum layer, i.e., the dichothermal layer, depth at station K2 (47° N, 160° E). The AGEM-based geostrophic volume transport and the streamfunction of the WSAG in the top 1000-dbar layer show that the gyre changes substantially. From the late 1990s to the mid-2000s, the gyre shrunk northward. Due to the shrinkage, the halocline bottom, which is equivalent to the top of the main pycnocline, deepens at K2 outside the central part of the gyre. The downward displacement of the dichothermal layer at K2 was found to be significantly related to that of the underlying halocline due to the northward shrinkage of the WSAG. 相似文献
75.
76.
77.
Lignin and fatty acid records in Lake Baikal sediments over the last 130 kyr: A comparison with pollen records 总被引:1,自引:0,他引:1
A 10 m sediment core from Academician Ridge in Lake Baikal was analyzed for its molecular composition using on-line TMAH (tetramethylammomium hydroxide) thermochemolysis. Major products are lignin phenols, n-C14 to C30 fatty acids (alkanoic acids), cutin acids, hydroxy acids and aliphatic dicarboxylic acids. Lignin phenols are abundant in warmer periods (the interglacial: marine isotope stage (MIS) 5e and MIS 1), but extremely low in the other (colder) periods. This result coincides well with pollen records reported for a core near the present site, where an expansion of coniferous forests in sub-stage 5e and MIS 1 was implied. Normal C24–C30 alkanoic acids, important components of plant wax esters, are abundant in 5e and MIS 1 and are present in significant amounts in the other (colder) periods, unlike the lignin phenols. A high abundance of n-C24 to C30 alkanoic acids relative to lignin phenols in the Bølling–Allerød warm period suggests an enhanced development of herbs.It is implied from comparison of the sedimentary lignin phenol record with fossil pollen records and lignin phenol analysis of modern pollen that the ratio of cinnamyl phenols to vanillyl phenols may serve as an indicator of pollen contribution to sedimentary organic matter. 相似文献
78.
79.
Masahide?WakitaEmail author Shuichi?Watanabe Yutaka?W.?Watanabe Tsuneo?Ono Nobuo?Tsurushima Shizuo?Tsunogai 《Journal of Oceanography》2005,61(1):129-139
The dissolved inorganic carbon (DIC) and related chemical species have been measured from 1992 to 2001 at Station KNOT (44°N, 155°E) in the western North Pacific subpolar region. DIC (1.3∼2.3 µ mol/kg/yr) and apparent oxygen utilization (AOU, 0.7∼1.8 µmol/kg/yr) have increased while total alkalinity remained constant in the intermediate water (26.9∼27.3σθ). The increases of DIC in the upper intermediate water (26.9∼27.1σθ) were higher than those in the lower one (27.2∼ 27.3σθ). The temporal change of DIC would be controlled by the increase of anthropogenic CO2, the decomposition of organic matter and the non-anthropogenic CO2 absorbed at the region of intermediate water formation. We estimated the increase of anthropogenic CO2 to be only 0.5∼0.7 µmol/kg/yr under equilibrium with the atmospheric CO2 content. The effect of decomposition was estimated to be 0.8 ± 0.7 µmol/kg/yr from AOU increase. The remainder of non-anthropogenic CO2 had increased by 0.6 ± 1.1 µmol/kg/yr. We suggest that the non-anthropogenic CO2 increase is controlled by the accumulation of CO2 liberated back to atmosphere at the region of intermediate water formation due to the decrease of difference between DIC in the winter mixed layer and DIC under equilibrium with the atmospheric CO2 content, and the reduction of diapycnal vertical water exchange between mixed layer and pycnocline waters. In future, more accurate and longer time series data will be required to confirm our results. 相似文献
80.
Representative rainfall thresholds for landslides in the Nepal Himalaya 总被引:14,自引:0,他引:14
Measuring some 2400 km in length, the Himalaya accommodate millions of people in northern India and Pakistan, Nepal, Bhutan, and parts of other Asian nations. Every year, especially during monsoon rains, landslides and related natural events in these mountains cause tremendous damage to lives, property, infrastructure, and environment. In the context of the Himalaya, however, the rainfall thresholds for landslide initiation are not well understood. This paper describes regional aspects of rainfall thresholds for landslides in the Himalaya. Some 677 landslides occurring from 1951 to 2006 were studied to analyze rainfall thresholds. Out of the 677 landslides, however, only 193 associated with rainfall data were analyzed to yield a threshold relationship between rainfall intensity, rainfall duration, and landslide initiation. The threshold relationship fitted to the lower boundary of the field defined by landslide-triggering rainfall events is I = 73.90D− 0.79 (I = rainfall intensity in mm h− 1 and D = duration in hours), revealing that when the daily precipitation exceeds 144 mm, the risk of landslides on Himalayan mountain slopes is high. Normalized rainfall intensity–duration relationships and landslide initiation thresholds were established from the data after normalizing rainfall-intensity data with respect to mean annual precipitation (MAP) as an index in which NI = 1.10D− 0.59 (NI = normalized intensity in h− 1). Finally, the role of antecedent rainfall in causing landslides was also investigated by considering daily rainfall during failure and the cumulative rainfall to discover at what point antecedent rainfall plays an important role in Himalayan landslide processes. Rainfall thresholds presented in this paper are generalized so they can be used in landslide warning systems in the Nepal Himalaya. 相似文献