首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
地球物理   6篇
地质学   40篇
海洋学   1篇
自然地理   3篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1997年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
11.
The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3?, Zn(HS)42?, and ZnS(HS)?. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3? and Zn(HS)42? are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)? and especially Zn(HS)42? become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42? is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3 <pHt <10, the fraction of Zn(HS)42? and ZnS(HS)? is less than 0.05% and 2.5% respectively, of the total Zn concentration and Zn(HS)20 and Zn(HS)3? predominate. The measured equilibrium formation constants were combined with the literature data on the stability of Zn–Cl complexes in order to evaluate the concentration and speciation of Zn in chloride solutions. It was found that at acidic pH, and in more saline fluids having total chloride > 0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = ? 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.  相似文献   
12.
13.
The ultraviolet spectra of dilute aqueous solutions of antimony (III) have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, equilibrium constants were obtained for the following reactions:
H3SbO30 ? H+ + H2SbO3  相似文献   
14.
Apatite fission-track and (U-Th)/He analyses require the liberation of intact idiomorphic apatite grains from rock samples. While routinely being carried out by mechanical methods, electrodynamic disaggregation (ED) offers an alternative approach. The high-voltage discharges produced during the ED process create localised temperature peaks (10000 K) along a narrow plasma channel. In apatite, such high temperatures could potentially reduce the length of fission tracks, which start to anneal at temperatures > 60 °C, and could also enhance He diffusion, which becomes significant at 30–40 °C over geological time scales. A comparison of fission-track analyses and (U-Th)/He ages of apatites prepared both by mechanical (jaw crusher, disk mill) and ED processing provides a way of determining whether heating during the latter method has any significant effect. Apatites from three samples of different geological settings (an orthogneiss from Madagascar, the Fish Canyon Tuff, and a muscovite-gneiss from Greece) yielded statistically identical track length distributions compared to samples prepared mechanically. Additionally, (U-Th)/He ages of apatites from a leucogranite from Morocco prepared by both methods were indistinguishable. These first results indicated that during electrodynamic disaggregation apatite crystals were not heated enough to partially anneal the fission tracks or induce significant diffusive loss of He.  相似文献   
15.
Mass balance calculations based on metal contents in hot spring mud deposits yield minimum metal contents in hot spring mud deposits yield minimum metal concentrations for the Rotokawa deep geothermal fluid which are compared with calculated (thermodynamic) mineral solubilities and direct analytical metal concentrations. The deep fluid is saturated with respect to native gold and argentite, but unsaturated with respect to cinnabar, native mercury, and stibnite. Adiabatic boiling leads to rapid partial precipitation of argentite from silver chloride complexes while silver and gold bisulfide complexes persist and become unstable only at shallower levels. Stibnite and cinnabar precipitation can only be expected at low temperatures and shallow levels. Mercury partitions into the vapor phase during boiling and a major fraction escapes to the atmosphere.  相似文献   
16.
17.
In the Himalayan orogen, Greater Himalayan (GH) rocks were buried to mid‐ to lower‐crustal levels and are now exposed across the strike of the orogen. Within the eastern Himalaya, in the Kingdom of Bhutan, the GH is divided into structurally lower (lower‐GH) and upper (upper‐GH) levels by the Kakhtang thrust (KT). Pressure–temperature estimates from lower‐ and upper‐GH rocks collected on two transects across the KT yield similar P–T–structural distance trends across each transect. In the eastern transect, temperatures are similar (from 730 to 650 °C) over a structural thickness of ~11 km, but peak pressures decrease from ~10 to 6 kbar with increasing structural level. In comparison, peak temperatures in the central Bhutan transect are similar (from 730 to 600 °C), but pressures decrease from 10 to 6.5 kbar with increasing structural level over a structural thickness of ~6 km. The structurally highest sample reveals slightly higher pressures of 8.0 kbar in comparison to pressures of ~6.5 kbar for samples collected from within the KT zone, ~4 km below. Within each transect, there are increases in pressure ± temperature within the overall upright P–T gradient that may demarcate intra‐GH shear zone(s). These P–T results combined with evidence that the timing of initial melt crystallization becomes older with increasing structural level suggest that the intra‐GH shear zones emplaced deeper GH rocks via progressive ductile underplating. These shear zones, including the KT, likely aided in the initial emplacement and construction of the GH as a composite tectonic unit during the Late Oligocene to Early Miocene, from c. 27 to 16 Ma.  相似文献   
18.
The Kohistan Arc Complex is an integral part of the NW Himalayan collision system and is bounded by two major suture zones, the Indus Suture Zone (ISZ) and the Northern Suture in the south and north respectively. Fission‐track analyses on samples collected along the Indus River across the arcuated ISZ in the Besham region are presented here. The footwall yields zircon and apatite fission‐track (FT) ages of ∼23 Ma and ∼3.7 Ma respectively; the hanging wall ages range from 24 to 42 Ma for zircon and ∼10 Ma for apatite. Thus, the change in ISZ kinematics from thrusting to normal faulting was not later than Oligocene and normal faulting on this ISZ segment was still active at least into early Pliocene times. At this time normal faulting had already ended at other ISZ segments, but it was still (or again) active across the ISZ in the Besham region most likely as a local phenomenon caused by the growth of the Indus Syntaxis, a transverse antiform parallel to the Nanga Parbat Syntaxis.  相似文献   
19.
A 3-D density model for the Cretan and Libyan Seas and Crete was developed by gravity modelling constrained by five 2-D seismic lines. Velocity values of these cross-sections were used to obtain the initial densities using the Nafe–Drake and Birch empirical functions for the sediments, the crust and the upper mantle. The crust outside the Cretan Arc is 18 to 24 km thick, including 10 to 14 km thick sediments. The crust below central Crete at its thickest section, has values between 32 and 34 km, consisting of continental crust of the Aegean microplate, which is thickened by the subducted oceanic plate below the Cretan Arc. The oceanic lithosphere is decoupled from the continental along a NW–SE striking front between eastern Crete and the Island of Kythera south of Peloponnese. It plunges steeply below the southern Aegean Sea and is probably associated with the present volcanic activity of the southern Aegean Sea in agreement with published seismological observations of intermediate seismicity. Low density and velocity upper mantle below the Cretan Sea with ρ  3.25 × 103 kg/m3 and Vp velocity of compressional waves around 7.7 km/s, which are also in agreement with observed high heat flow density values, point out at the mobilization of the upper mantle material here. Outside the Hellenic Arc the upper mantle density and velocity are ρ ≥ 3.32 × 103 kg/m3 and Vp = 8.0 km/s, respectively. The crust below the Cretan Sea is thin continental of 15 to 20 km thickness, including 3 to 4 km of sediments. Thick accumulations of sediments, located to the SSW and SSE of Crete, are separated by a block of continental crust extended for more than 100 km south of Central Crete. These deep sedimentary basins are located on the oceanic crust backstopped by the continental crust of the Aegean microplate. The stretched continental margin of Africa, north of Cyrenaica, and the abruptly terminated continental Aegean microplate south of Crete are separated by oceanic lithosphere of only 60 to 80 km width at their closest proximity. To the east and west, the areas are floored by oceanic lithosphere, which rapidly widens towards the Herodotus Abyssal plain and the deep Ionian Basin of the central Mediterranean Sea. Crustal shortening between the continental margins of the Aegean microplate and Cyrenaica of North Africa influence the deformation of the sediments of the Mediterranean Ridge that has been divided in an internal and external zone. The continental margin of Cyrenaica extends for more than 80 km to the north of the African coast in form of a huge ramp, while that of the Aegean microplate is abruptly truncated by very steep fractures towards the Mediterranean Ridge. Changes in the deformation style of the sediments express differences of the tectonic processes that control them. That is, subduction to the northeast and crustal subsidence to the south of Crete. Strike-slip movement between Crete and Libya is required by seismological observations.  相似文献   
20.
The Betic–Rif belt, in the western Mediterranean, experienced a pre-Alpine history and was later extensively reworked by major Alpine tectonics. There is abundant data showing that the Betic chain suffered very high cooling rates during its Alpine history, constrained mainly by geochronology using various isotopic systems and by palaeontological age determinations. In the westernmost part of the chain the high closure-temperature isotopic systems recorded Miocene high-grade metamorphism in the country rocks. In order to constrain the later stages of cooling, fission-track analysis has been applied to both zircon and apatite. The results point to extremely high rates of cooling (400 °C/Ma) between 21 and 19 Ma. Rates slowed to 100 °C/Ma for the time period 19 to about 12 Ma. The fission-track analysis also confirms the existence of an extensional tectonic stage between 19 and 17 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号