首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   23篇
  国内免费   1篇
测绘学   10篇
大气科学   13篇
地球物理   97篇
地质学   96篇
海洋学   27篇
天文学   70篇
自然地理   42篇
  2024年   1篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   10篇
  2018年   20篇
  2017年   14篇
  2016年   18篇
  2015年   11篇
  2014年   8篇
  2013年   19篇
  2012年   16篇
  2011年   28篇
  2010年   15篇
  2009年   23篇
  2008年   17篇
  2007年   13篇
  2006年   10篇
  2005年   8篇
  2004年   11篇
  2003年   9篇
  2002年   13篇
  2001年   9篇
  2000年   11篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有355条查询结果,搜索用时 0 毫秒
351.
The 329-Mt Brunswick No. 12 volcanogenic massive sulfide deposit (total resource of 163 Mt at 10.4% Zn, 4.2% Pb, 0.34% Cu, and 115 g/t Ag) is hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence. Massive sulfides are for the most part syngenetic, and the bulk of the sulfide ore occurs as a Zn–Pb-rich banded sulfide facies that forms an intimate relationship with a laterally extensive Algoma-type iron formation and defines the Brunswick Horizon. Zone refining of stratiform sulfides is considered to have resulted in the development of a large replacement-style Cu-rich basal sulfide facies, which is generally confined between the banded sulfide facies and an underlying stringer sulfide zone. Complex polyphase deformation and associated lower- to upper-greenschist facies regional metamorphism is responsible for the present geometry of the deposit. Textural modification has resulted in a general increase in grain size through the development of pyrite and arsenopyrite porphyroblasts, which tend to overprint primary mineral assemblages. Despite the heterogeneous ductile deformation, primary features have locally been preserved, such as fine-grained colloform pyrite and base and precious metal zonation within the Main Zone. Base metal and trace element abundances in massive sulfides from the Brunswick No. 12 deposit indicate two distinct geochemical associations. The basal sulfide facies, characterized by a proximal high-temperature hydrothermal signature (Cu–Co–Bi–Se), contains generally low Au contents averaging 0.39 ppm (n = 34). Conversely, Au is enriched in the banded sulfide facies, averaging 1.1 ppm Au (n = 21), and is associated with an exhalative suite of elements (Zn–Pb–As–Sb–Ag–Sn). Finely laminated sulfide lenses hosted by iron formation at the north end of the Main Zone are further enriched in Au, averaging 1.7 ppm (n = 41) and ranging up to 8.2 ppm. Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) analyses of pyrite (n = 97) from the north end of the Main Zone average 2.6 ppm Au and range from the detection limit (0.015 ppm) to 21 ppm. Overall, these analyses reveal a distinct Au–Sb–As–Ag–Hg–Mn association within pyrite grains. Gold is strongly enriched in large pseudo-primary masses of pyrite that exhibit relict banding and fine-grained cores; smaller euhedral pyrite porphyroblasts, and euhedral rims of metamorphic origin surrounding the pyrite masses, contain much less Au, Sb, Ag, As, and Sn. Arsenopyrite, occurring chiefly as late porphyroblasts, contains less Au, averaging 1.0 ppm and ranging from the detection limit (0.027 ppm) to 6.9 ppm. Depth profiles for single-spot laser ablation ICP-MS analyses of pyrite and arsenopyrite display uniform values of Au and an absence of discrete microscopic inclusions of Au-bearing minerals, which is consistent with chemically bonded Au in the sulfide structure. The pervasive correlation of Au with Sn in the Zn–Pb-rich banded sulfide facies suggests similar hydrothermal behavior during the waxing stages of deposition on the seafloor. Under high temperature (>350oC) and moderate- to low-pH conditions, Au and Sn in hydrothermal fluids would be transported as chlorocomplexes. An abrupt decrease in temperature and aH2S, accompanied by an increase in fO2 and pH during mixing with seawater, would lead to the simultaneous destabilization of both Au and Sn chlorocomplexes. The enrichment of Au in fine-grained laminated sulfides on the periphery of the deposit, accompanied by sporadic occurrences of barite and Fe-poor sphalerite, supports lower hydrothermal fluid temperatures analogous to white smoker activity on the flanks of a large volcanogenic massive sulfide system. In lower temperature (<350oC) and mildly acidic hydrothermal fluids, Au would be transported by thiocomplexes, which exhibit multifunctional (retrograde–prograde) solubility and a capacity to mobilize Au to the outer parts of the sulfide mound. The sluggish nature of this low-temperature venting together with larger variations in ambient fO2 could lead to a sharp enrichment of Au towards the stratigraphic hanging wall of massive sulfide deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
352.
Understanding the nature of streamflow response to precipitation inputs is at the core of hydrological applications and water resource management. Indices such as the base flow index, recession constant, and response lag of a watershed retain an important place in hydrology as metrics to compare watersheds and understand the impact of human activity, geology, geomorphology, soils, and climate on precipitation–runoff relations. Extracting characteristics of the hyetograph–hydrograph relationship is often done manually, which is time consuming and may result in subjective and potentially inconsistent outcomes. Here, we present a MATLAB‐based toolbox, called HydRun, for rapid and flexible rainfall–runoff analysis. HydRun uses a series of flexible routines to extract base flow from the hydrograph and then computes commonly used time instants of the rainfall–runoff relationship. HydRun provides users the flexibility to decide thresholds and limits of analysis, but objectively computes hydrometric indices. The toolkit includes a graphical user interface and example files. In this paper, we apply HydRun to 4 watersheds, 3 in Scotland and 1 in Canada, to demonstrate the software functions and highlight important decisions the user must make in its application.  相似文献   
353.
Soil‐mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This study sought to monitor erosion processes within an experimental landscape filled with packed homogenous soil, which was exogenically forced by rainfall and base level adjustments, and to define the temporal and spatial variation of the erosion regimes. Close‐range photogrammetry and terrain analysis were employed as the primary methods to discriminate these erosion regimes. Results show that (1) four distinct erosion regimes can be identified (raindrop impact, sheet flow, rill, and gully), and these regimes conformed to an expected trajectory of landscape evolution; (2) as the landscape evolved, the erosion regimes varied in areal coverage and in relative contribution to total sediment efflux measured at the outlet of the catchment; and (3) the sheet flow and rill erosion regimes dominated the contributions to total soil loss. Disaggregating the soil erosion processes greatly facilitated identifying and mapping each regime in time and space. Such information has important implications for improving soil erosion prediction technology, for assessing landscape degradation by soil erosion, for mapping regions vulnerable to future erosion, and for mitigating soil losses and managing soil resources. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
354.
In this study, ten best management practices (BMP) were implemented on agricultural areas in the Saginaw River Watershed using the Soil and Water Assessment Tool model based on four targeting methods (Load per Subbasin Area Index (LPSAI), Load per Unit Area Index (LPUAI), Concentration Impact Index (CII), and Load Impact Index (LII)). The effective BMPs both for targeting and non‐targeting pollutants were contour farming (CF) (except total nitrogen reduction during total phosphorus targeting scenario), residue management 1000 kg/ha and 2000 kg/ha, strip cropping, recharge structures, terracing, and native grass (NG). In contrast, conservation tillage and no tillage did not reduce significant amount of pollutants for any combination of targeting methods and priority areas. In regard to spatial correlation between targeting methods, a strong relationship was found between the LPSAI and LPUAI methods both for the sediment and total nitrogen targeting scenarios. In addition, a similar result was found between the CII and LPSAI targeting methods. Regarding the spatiotemporal variability of BMP implementation plan, distinct change in priority area was observed in the case of NG implementation by the end of the second year; however, this impact was minimal for CF due to less pollutant reduction efficiency compared to NG. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
355.
Sean Ulm 《Geoarchaeology》2002,17(4):319-348
As a component of archaeological investigations on the central Queensland coast, a series of five marine shell specimens live‐collected between A.D. 1904 and A.D. 1929 and 11 shell/charcoal paired samples from archaeological contexts were radiocarbon dated to determine local ΔR values. The object of the study was to assess the potential influence of localized variation in marine reservoir effect in accurately determining the age of marine and estuarine shell from archaeological deposits in the area. Results indicate that the routinely applied ΔR value of −5 ± 35 for northeast Australia is erroneously calculated. The determined values suggest a minor revision to Reimer and Reimer's (2000) recommended value for northeast Australia from ΔR = +11 ± 5 to +12 ± 7, and specifically for central Queensland to ΔR = +10 ± 7, for near‐shore open marine environments. In contrast, data obtained from estuarine shell/charcoal pairs demonstrate a general lack of consistency, suggesting estuary‐specific patterns of variation in terrestrial carbon input and exchange with the open ocean. Preliminary data indicate that in some estuaries, at some time periods, a ΔR value of more than −155 ± 55 may be appropriate. In estuarine contexts in central Queensland, a localized estuary‐specific correction factor is recommended to account for geographical and temporal variation in 14C activity. © 2002 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号