首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   9篇
  国内免费   2篇
测绘学   25篇
大气科学   18篇
地球物理   38篇
地质学   75篇
海洋学   5篇
天文学   26篇
综合类   2篇
自然地理   3篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   12篇
  2017年   15篇
  2016年   22篇
  2015年   5篇
  2014年   20篇
  2013年   13篇
  2012年   8篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   3篇
  1993年   1篇
  1992年   1篇
  1991年   10篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
111.
The triple-lined spectroscopic triple system HD 109648 has one of the shortest periods known for the outer orbit in a late-type triple, 120.5 d, and the ratio between the periods of the outer and the inner orbits is small, 22:1. With such extreme values, this system should show orbital element variations over a time-scale of about a decade. We have monitored the radial velocities of HD 109648 with the CfA Digital Speedometers for 8 yr, and have found evidence for modulation of some orbital elements. While we see no definite evidence for modulation of the inner binary eccentricity, we clearly observe variations in the inner and the outer longitudes of periastron, and in the radial velocity amplitudes of the three components. The observational results, combined with numerical simulations, allow us to put constraints on the orientation of the orbits.  相似文献   
112.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   
113.
This paper presents the removal of hazardous hexavalent chromium from liquid waste streams using divinylbenzene copolymer resin Amberlite IRA 96. Important sorption parameters such as contact time, pH, resin dosage and initial metal concentration were studied at 30?°C. The kinetic study was conducted using pseudo-first and pseudo-second-order kinetics at 30?°C. The sorption process was found to be pH dependent. Maximum removal was obtained at pH 2 under optimized conditions. The sorption process was rapid and 99?% of the removal was achieved in first 30?min. The equilibrium data were fitted to both Langmuir and Freundlich models. The better regression coefficient (R 2) in Freundlich model suggests the multilayer sorption process. The value of Gibbs free energy for sorption process was found to be ?12.394?kJmol?1. The negative value indicated the spontaneity of the sorption process. Scanning electron microscope and energy dispersive X-ray spectroscopy studies were conducted to find the role of surface morphology during sorption process. The Fourier transform infrared study was conducted to identify the functional groups responsible for interaction between the resin and chromium. Desorption and regeneration studies were also carried out.  相似文献   
114.
Size distribution of PM10 mass aerosols and its ionic characteristics were studied for 2 years from January 2006 to December 2007 at central Delhi by employing an 8-stage Andersen Cascade Impactor sampler. The mass of fine (PM2.5) and coarse (PM10?2.5) mode particles were integrated from particle mass determined in different stages. Average concentrations of mass PM10 and PM2.5 were observed to be 306 ± 182 and 136 ± 84 μg m?3, respectively, which are far in excess of annual averages stipulated by the Indian National Ambient Air Quality Standards (PM10: 60 μg m?3 and PM2.5: 40 μg m?3). The highest concentrations of PM10?2.5 (coarse) and PM2.5 (fine) were observed 505 ± 44 and 368 ± 61 μg m?3, respectively, during summer (June 2006) period, whereas the lower concentrations of PM10?2.5 (35 ± 9 μg m?3) and PM2.5 (29 ± 13 μg m?3) were observed during monsoon (September 2007). In summer, because of frequent dust storms, coarse particles are more dominant than fine particles during study period. However, during winter, the PM2.5 contribution became more pronounced as compared to summer probably due to enhanced emissions from anthropogenic activities, burning of biofuels/biomass and other human activities. A high ratio (0.58) of PM2.5/PM10 was observed during winter and low (0.24) during monsoon. A strong correlation between PM10 and PM2.5 (r 2 = 0.93) was observed, indicating that variation in PM10 mass is governed by the variation in PM2.5. Major cations (NH4 +, Na+, K+, Ca2+ and Mg2+) and anions (F?, Cl?, SO4 2? and NO3 ?) were analyzed along with pH. Average concentrations of SO4 2? and NO3 ? were observed to be 12.93 ± 0.98 and 10.33 ± 1.10 μg m?3, respectively. Significant correlation between SO4 2? and NO3 ? in PM1.0 was observed indicating the major sources of secondary aerosol which may be from thermal power plants located in the southeast and incomplete combustion by vehicular exhaust. A good correlation among secondary species (NH+, NO3 ? and SO4 2?) suggests that most of NH4 + is in the form of ammonium sulfate and ammonium nitrate in the atmosphere. During winter, the concentration of Ca2+ was also higher; it may be due to entrainment of roadside dust particles, traffic activities and low temperature. The molar ratio (1.39) between Cl? and Na+ was observed to be close to that of seawater (1.16). The presence of higher Cl? during winter is due to western disturbances and probably local emission of Cl? due to fabric bleaching activity in a number of export garment factories in the proximity of the sampling site.  相似文献   
115.
Time series analysis has two goals, modeling random mechanisms and predicting future series using historical data. In the present work, a uni-variate time series autoregressive integrated moving average (ARIMA) model has been developed for (a) simulating and forecasting mean rainfall, obtained using Theissen weights; over the Mahanadi River Basin in India, and (b) simulating and forecasting mean rainfall at 38 rain-gauge stations in district towns across the basin. For the analysis, monthly rainfall data of each district town for the years 1901-2002 (102 years) were used. Theissen weights were obtained over the basin and mean monthly rainfall was estimated. The trend and seasonality observed in ACF and PACF plots of rainfall data were removed using power transformation (α=0.5) and first order seasonal differencing prior to the development of the ARIMA model. Interestingly, the ARIMA model (1,0,0)(0,1,1) 12 developed here was found to be most suitable for simulating and forecasting mean rainfall over the Mahanadi River Basin and for all 38 district town rain-gauge stations, separately. The Akaike Information Criterion (AIC), goodness of fit (Chi-square), R 2 (coefficient of determination), MSE (mean square error) and MAE (mea absolute error) were used to test the validity and applicability of the developed ARIMA model at different stages. This model is considered appropriate to forecast the monthly rainfall for the upcoming 12 years in each district town to assist decision makers and policy makers establish priorities for water demand, storage, distribution, and disaster management.  相似文献   
116.
In this study, the climate mean, variability, and dominant patterns of the Northern Hemisphere wintertime mean 200 hPa geopotential height (Z200) in a CMIP and a set of AMIP simulations from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2) are analyzed and compared with the NCEP/NCAR reanalysis. For the climate mean, it is found that a component of the bias in stationary waves characterized with wave trains emanating from the tropics into both the hemispheres can be attributed to the precipitation deficit over the Maritime continent. The lack of latent heating associated with the precipitation deficit may have served as the forcing of the wave trains. For the variability of the seasonal mean, both the CMIP and AMIP successfully simulated the geographical locations of the major centers of action, but the simulated intensity was generally weaker than that in the reanalysis, particularly for the center over the Davis Strait-southern Greenland area. It is also noted that the simulated action center over Aleutian Islands was southeastward shifted to some extent. The shift was likely caused by the eastward extension of the Pacific jet. Differences also existed between the CMIP and the AMIP simulations, with the center of actions over the Aleutian Islands stronger in the AMIP and the center over the Davis Strait-southern Greenland area stronger in the CMIP simulation. In the mode analysis, the El Nino-Southern Oscillation (ENSO) teleconnection pattern in each dataset was first removed from the data, and a rotated empirical orthogonal function (REOF) analysis was then applied to the residual. The purpose of this separation was to avoid possible mixing between the ENSO mode and those generated by the atmospheric internal dynamics. It was found that the simulated ENSO teleconnection patterns from both model runs well resembled that from the reanalysis, except for a small eastward shift. Based on the REOF modes of the residual data, six dominant modes of the reanalysis data had counterparts in each model simulation, though with different rankings in explained variance and some distortions in spatial structure. By evaluating the temporal coherency of the REOF modes between the reanalysis and the AMIP, it was found that the time series associated with the equatorially displaced North Atlantic Oscillation in the two datasets were significantly correlated, suggesting a potential predictability for this mode.  相似文献   
117.
Gypsum Induced Strength Behaviour of Fly Ash-Lime Stabilized Expansive Soil   总被引:1,自引:1,他引:0  
Physical and engineering properties of soil are improved with various binders and binder combinations. Fly ash and lime are commonly used to improve the properties of expansive soils. An attempt has been made, in this paper, to examine the role of gypsum on the physical and strength behaviour of fly ash-lime stabilized soil. The change in strength behaviour is studied at different curing periods up to 90 days, and the mechanism is elucidated through pH, mineralogical, microstructural and chemical composition study. The strength of soil-fly ash mixture has improved marginally with the addition of lime up to 4 % lime and with curing period for 28 day. Significant increase in strength has been observed with 6 % lime and enhanced significantly after curing for 90 days. The variations in the strength of soil with curing period is due to cation exchange and flocculation initially, and binding of particles with cementitious compounds formed after curing. With addition of 1 % gypsum to soil-fly ash-lime, the strength gain is accelerated as seen at 14 day curing. The accelerated strength early is due to formation of compacted structure with growth of ettringite needles within voids. However, strength at curing for 28 day has been declined due to annoyance of clay matrix with the increase in size of ettringite needle; and again increased after curing for 90 days. The rearrangement of clay matrix and suppression of sulphate effects with formation of cementitious compounds are observed and found to be the main responsible factors for strength recovered.  相似文献   
118.
Drilling at the barrage site of a hydropower project usually gives a reasonable picture of the sub-surface rock mass condition. However, when the overburden (OB) comprising river borne materials is very thick and the basement rock is deep, the drilling results become unreliable. In the present case, the depth to the granitic gneiss basement is 45m from the river level and the height of the proposed diversion barrage is only 24.5 m. For this reason, stripping of the overburden up to the basement is not considered feasible. Cross-borehole seismic tomography (CST) was carried out at the barrage site to investigate the inclusions and structure of the OB material in order to facilitate a foundation design suitable for permeable formation. Three sets of CST surveys were carried out up to a depth of 30 m between the three vertical boreholes that were prepared at the vertices of an equilateral triangle with a separation of 17.8 m. The tomograms precisely imaged the nature and disposition of the different constituents of the overburden material. A lens shaped low velocity layer (LVL) with seismic velocity Vp=2000–2500 ms?1 was mapped at a depth of 14.5m from the surface. Hence, it was recommended to shift the barrage axis by 50 m towards the downstream side of the proposed axis. The outcome of this study proved valuable for the designer who finalised the foundation design. Successful application of CST in OB characterisation has reiterated the need of such studies for barrage site investigations particularly in the Himalayan terrain.  相似文献   
119.
We made an attempt to assess the shear wave velocity values V S and, to a lesser extent, the V P values from ambient noise recordings in an array configuration. Five array sites were situated in the close proximity to borehole sites. Shear wave velocity profiles were modeled at these five array sites with the aid of two computational techniques, viz. spatial autocorrelation (SPAC) and H/V ellipticity. Out of these five array sites, velocity estimates could be reliably inferred at three locations. The shear wave velocities estimated by these methods are found to be quite consistent with each other. The computed V S values up to 30 m depth are in the range from 275 to 375 m/s in most of the sites, which implies prevalence of a low velocity zone at some pocket areas. The results were corroborated by evidence of site geology as well as geotechnical information.  相似文献   
120.
In this study, an attempt is made to determine seismic velocity structure of the crust and upper mantle beneath the Shillong-Mikir Hills Plateau in northeast India region. The principle of the technique is to relate seismic travel times with crustal thickness above the Conrad and Moho discontinuities. Broadband digital waveforms of the local earthquakes make a precise detection of the seismic phases possible that are reflected at these discontinuities. The results show that the Conrad discontinuity is at 18–20 (±0.5) km beneath the Shillong-Mikir Hills Plateau and the Moho discontinuity is at 30 ± 1.0 km beneath the Shillong Plateau and at 35 ± 1.0 km beneath the Mikir Hills.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号