首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   15篇
  国内免费   6篇
测绘学   52篇
大气科学   19篇
地球物理   75篇
地质学   176篇
海洋学   16篇
天文学   104篇
综合类   6篇
自然地理   9篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   11篇
  2018年   16篇
  2017年   21篇
  2016年   32篇
  2015年   19篇
  2014年   25篇
  2013年   37篇
  2012年   32篇
  2011年   20篇
  2010年   21篇
  2009年   16篇
  2008年   18篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   11篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1977年   2篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
  1928年   1篇
排序方式: 共有457条查询结果,搜索用时 31 毫秒
121.
The A-type Mayurbhanj Granite Pluton (3.09 Ga), occurring along the eastern margin of the Singhbhum-Orissa Craton, eastern India, represents the final phase of acid plutonism in this crustal block of Archean age. The granite shows a bimodal association with a voluminous gabbroid body, exposed mainly along its western margin, and is associated with the Singhbhum Shear zone. The granite pluton is composed mainly of a coarse ferrohastingsite–biotite granite phase, with an early fine-grained granophyric microgranitic phase and a late biotite aplogranitic phase. Petrogenetic models of partial melting, fractional crystallisation and magma mixing have been advocated for the evolution of this pluton. New data, combined with earlier information, suggest that two igneous processes were responsible for the evolution of the Mayurbhanj Granite Pluton: partial melting of the Singhbhum Granite; followed by limited amount of mixing of acid and basic magmas in an anorogenic extensional setting. The necessary heat for partial melting was provided by the voluminous basaltic magma, now represented by the gabbroid body, emplaced at a shallow crustal level and showing a bimodal association with the Mayurbhanj Granite Pluton. The Singhbhum Shear Zone provided a possible channel way for the emplacement of the basic magma during crustal extension. It is concluded that all three phases of the Mayurbhanj Granite Pluton were derived from the same parent magma, generated by batch partial melting of the Singhbhum Granite at relatively high temperatures (980 °C) and low pressures (4 to <2 kbar) under anhydrous conditions. The coarse ferrohastingsite biotite granite phase shows evidence of limited and heterogeneous assimilation of country rock metasediments. However, the early microgranite phase and late aplogranite phase have not assimilated any metasediments. Compositional irregularities observed along the western margin of the Mayurbhanj Granite Pluton in contact with the gabbro body including a continuous fractionating sequence from quartz diorite to alkali-feldspar granite in the Notopahar area. Gradational contacts between the gabbro and the Mayurbhanj Granite Pluton in the Gorumahisani area etc., may be attributed to a limited amount of mixing between the gabbroid magma and the newly generated Mayurbhanj Granite magma. The mixing was mainly of liquid–liquid diffusive type, with a subordinate amount of mixing of solid–liquid type. Although A-type granites are commonly described as having high total REE (e.g. 270–400 ppm), studies on the late aplogranite phase of the Mayurbhanj Granite show that total REE values (100 ppm) are low. This low REE abundance may be attributed to the progressive residual nature of the Singhbhum Granite source during continued partial melting, when the magmas of the microgranite and coarse granite phases had already been removed from the source region.  相似文献   
122.
A numerical method of analysis is proposed for computation of the elastic settlement of raft foundations using a FEM–BEM coupling technique. The structural model adopted for the raft is based on an isoparametric plate bending finite element and the raft–soil interface is idealized by boundary elements. Mindlin's half-space solution is used as a fundamental solution to find the soil flexibility matrix and consequently the soil stiffness matrix. Transformation of boundary element matrices are carried out to make it compatible for coupling with plate stiffness matrix obtained from the finite element method. This method is very efficient and attractive in the sense that it can be used for rafts of any geometry in terms of thickness as well as shape and loading. Depth of embedment of the raft can also be considered in the analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
123.
1INTRODUCTION Hydroponics(aGreekword,hydromeanswater andponos,labour),asoil-lessagriculture,isa termtobedescribedinseveralwaysinwhichplants cangrowwithoutsoil,byuseofaninertmedium whereplantcantakeupessentialnutrients,either fromwaterinwhichanutrientsolutionisaddedor fromorganicmaterialsthatexistsinthemedium.Thesemediacanbegravel,sand,peat,vermiculate,prelite,sawdustorotherplantmatters(organiccom ponents).Therefore,theprocessinwhichaquatic weedsaredumpedonwatertoconstructfloatingbed orart…  相似文献   
124.
The Agoudal IIAB iron meteorite exhibits only kamacite grains (~6 mm across) without any taenite. The kamacite is homogeneously enriched with numerous rhabdite inclusions of different size, shape, and composition. In some kamacite domains, this appears frosty due to micron‐scale rhabdite inclusions (~5 to 100 μm) of moderate to high Ni content (~26 to 40 wt%). In addition, all the kamacite grains in matrix are marked with a prominent linear crack formed during an atmospheric break‐up event and subsequently oxidized. This feature, also defined by trails of lowest Ni‐bearing (mean Ni: 23 wt%) mm‐scale rhabdite plates (fractured and oxidized) could be a trace of a pre‐existing γ–α interface. Agoudal experienced a very slow rate of primary cooling ~4 °C Ma?1 estimated from the binary plots of true rhabdite width against corresponding Ni wt% and the computed cooling rate curves after Randich and Goldstein (1978). Chemically, Agoudal iron (Ga: 54 ppm; Ge: 140 ppm; Ir: 0.03 ppm) resembles the Ainsworth iron, the coarsest octahedrite of the IIAB group. Agoudal contains multiple sets of Neumann bands that are formed in space and time at different scales and densities due to multiple impacts with shock magnitude up to 130 kb. Signatures of recrystallization due to postshock low temperature mild reheating at about 400 °C are also locally present.  相似文献   
125.
The performance of the ultraviolet telescope (UVIT) on-board AstroSat is reported. The performance in orbit is also compared with estimates made from the calibrations done on the ground. The sensitivity is found to be within \(\sim \)15% of the estimates, and the spatial resolution in the NUV is found to exceed significantly the design value of \(1.8^{\prime \prime }\) and it is marginally better in the FUV. Images obtained from UVIT are presented to illustrate the details revealed by the high spatial resolution. The potential of multi-band observations in the ultraviolet with high spatial resolution is illustrated by some results.  相似文献   
126.
127.
Climate change has significant impacts on water availability in larger river basins. The present study evaluates the possible impacts of projected future daily rainfall (2011–2099) on the hydrology of a major river basin in peninsular India, the Godavari River Basin, (GRB), under RCP4.5 and RCP8.5 scenarios. The study highlights a criteria-based approach for selecting the CMIP5 GCMs, based on their fidelity in simulating the Indian Summer Monsoon rainfall. The nonparametric kernel regression based statistical downscaling model is employed to project future daily rainfall and the variable infiltration capacity (VIC) macroscale hydrological model is used for hydrological simulations. The results indicate an increase in future rainfall without significant change in the spatial pattern of hydrological variables in the GRB. The climate-change-induced projected hydrological changes provide a crucial input to define water resource policies in the GRB. This methodology can be adopted for the climate change impacts assessment of larger river basins worldwide.  相似文献   
128.
Amplitude interpretation for hydrocarbon prediction is an important task in the oil and gas industry. Seismic amplitude is dominated by porosity, the volume of clay, pore-filled fluid type and lithology. A few seismic attributes are proposed to predict the existence of hydrocarbon. This paper proposes a new fluid factor by adding a correct item based on the J attribute. The algorithm is verified through stochastic Monte Carlo modelling that contains various rock physical properties of sand and shale. Both gas and oil responses are separated by the new fluid factor. Furthermore, an approach based on the neural network model is trained using the deep learning method to predict the new fluid factor. The confusion matrix shows that this model performs well. This model allows the application of the new fluid factor in the seismic data. In this study, the Marmousi II data set is used to examine the performance of the new fluid factor, and the result is good. Most hydrocarbon reservoirs are identified in the shale–sandstone sequences. The combination of deep learning and the new fluid factor provides a more accurate way for hydrocarbon prediction.  相似文献   
129.
Solar System Research - In the current investigation we have studied the distribution as well as the asymmetry of solar X-ray flares during the period 1976–2017 which corresponds to solar...  相似文献   
130.
Santhoshkumar  G.  Ghosh  Priyanka 《Acta Geotechnica》2020,15(10):2969-2982
Acta Geotechnica - The potential use of a hunchbacked retaining wall over a conventional retaining wall under the seismic passive state is emphasised in this study employing the method of stress...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号