首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   7篇
测绘学   4篇
大气科学   10篇
地球物理   84篇
地质学   47篇
海洋学   10篇
天文学   23篇
综合类   2篇
自然地理   18篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   10篇
  2015年   13篇
  2014年   7篇
  2013年   6篇
  2012年   13篇
  2011年   15篇
  2010年   9篇
  2009年   22篇
  2008年   14篇
  2007年   13篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1973年   2篇
  1972年   3篇
  1969年   1篇
  1963年   2篇
  1949年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
121.
122.
123.
By exploiting the theory of the response envelopes formulated by Menun and Der Kiureghian [Envelopes for seismic response vectors. I–Theory, J. Str. Engrg. 2000; 126(3); 467–473], an algorithmic approach for seismic analysis of reinforced concrete frames is presented. It aims to fill a gap between research on spectral analysis of structures and current design practice in which the use of seismic response envelopes, available since early 2000s, is hampered by the lack of efficient and robust implementations. The proposed strategy is based on customary features (such as modal shapes and response spectra) currently adopted in professional practice, and it takes advantage of recently published formulations for the evaluation of stress resultants in arbitrarily shaped reinforced concrete cross‐sections subjected to axial force and biaxial bending. Numerical applications are illustrated in order to show the procedure's efficiency and effectiveness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
124.
Analysis of rainfall seasonality from observations and climate models   总被引:1,自引:0,他引:1  
Two new indicators of rainfall seasonality based on information entropy, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere–ocean general circulation models. The RE provides a measure of the number of wet months and, for precipitation regimes featuring a distinct wet and dry season, it is directly related to the duration of the wet season. The DSI combines the rainfall intensity with its degree of seasonality and it is an indicator of the extent of the global monsoon region. We show that the RE and the DSI are fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercomparison and ranking. Regions with different precipitation regimes are classified and characterized in terms of RE and DSI. Comparison of different land observational datasets reveals substantial difference in their local representation of seasonality. It is shown that two-dimensional maps of RE provide an easy way to compare rainfall seasonality from various datasets and to determine areas of interest. Models participating to the Coupled Model Intercomparison Project platform, Phase 5, consistently overestimate the RE over tropical Latin America and underestimate it in West Africa, western Mexico and East Asia. It is demonstrated that positive RE biases in a general circulation model are associated with excessively peaked monthly precipitation fractions, too large during the wet months and too small in the months preceding and following the wet season; negative biases are instead due, in most cases, to an excess of rainfall during the premonsoonal months.  相似文献   
125.
This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket’s burnout energy is used to find its equivalent initial velocity for a given launcher’s altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.  相似文献   
126.
This study investigates in detail the deformation events that have affected the sedimentary successions forming the substrate of Mt. Etna volcano (Italy). Based on the geometric reconstruction of a buried sedimentary marker, we have been able to identify and quantify the effects of three different mechanisms of deformation that have affected the area in the last 600 ka. Numerical results from Finite Element Method (FEM) applied to model viscoelastic deformation suggest the occurrence of a crustal doming process originating at the mantle‐crust transition (~16 km). We propose that the source of deformation is related to the diapiric uprise of hydrothermal material originating in altered ocean‐like crust and its emplacement at a shallower level in the crust. This process has great relevance in the volcanic system and should be considered for the full assessment of its origin and evolution.  相似文献   
127.
128.
129.
130.
Terrain analysis applications using remotely sensed Digital Elevation Models (DEMs), nowadays easily available, permit to quantify several river basin morphologic and hydrologic properties (e.g. slope, aspect, curvature, flow path lengths) and indirect hydrogeomorphic indices (e.g. specific upslope area, topographic wetness index) able to characterize the physical processes governing the landscape evolution (e.g. surface saturation, runoff, erosion, deposition). Such DEMs often contain artifacts and the automated hydrogeomorphic characterization of the watershed is influenced by terrain analysis procedures consisting in artificial depression (pit) and flat area treatment approaches combined with flow direction methods.In shallow landslide deterministic models, when applied using topographic dataset at medium scale (e.g. 30 m of resolution), the choice of the most suitable DEM-processing procedure is not trivial and can influence model results. This also affects the selection of most critical areas for further finer resolution studies or for the implementation of countermeasures aiming to landslide risk mitigation.In this paper such issue is investigated using as topographic input the ASTER DEMs and comparing two different combinations of DEM correction and flow routing schemes. The study areas comprise ten catchments in Italy for which hydrogeomorphic processes are significant. Aims of this paper are: 1) to introduce a parameter estimation procedure for the physically-based DEM correction method PEM4PIT (Physical Erosion Model for PIT removal); 2) to investigate the influence of different terrain analysis procedures on results of the slope stability model SHALSTAB (SHAllow Landsliding STABility) using remotely-sensed ASTER DEMs; 3) trying to assess which of terrain analysis methods is more appropriate for describing terrain instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号