全文获取类型
收费全文 | 141篇 |
免费 | 4篇 |
专业分类
测绘学 | 2篇 |
大气科学 | 5篇 |
地球物理 | 41篇 |
地质学 | 34篇 |
海洋学 | 16篇 |
天文学 | 39篇 |
综合类 | 1篇 |
自然地理 | 7篇 |
出版年
2021年 | 5篇 |
2020年 | 4篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 2篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 10篇 |
2009年 | 2篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 6篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
排序方式: 共有145条查询结果,搜索用时 12 毫秒
81.
Jun-Ichi Sakai 《Solar physics》1992,140(1):99-119
We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic fields during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion of the current sheet, which is driven by the converging flow toward the center of the magnetic arcade. We investigated a test particle motion in the strong electromagnetic fields derived from the MHD equations. It is shown that both protons and electrons can be promptly (within 1 s) accelerated to 70 and 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma-ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares. 相似文献
82.
A 3-D particle simulation of excitation of whistler waves driven by an electron temperature anisotropy (T
> T
) is presented. Results show that whistler waves can have appreciable growth driven by the anisotropy. The maximum intensity of the excited whistler waves increases as a quadratic function of the anisotropy. Due to the presence of a threshold, one needs a relatively large electron temperature anisotropy above threshold to generate large-amplitude whistler waves. The average amplitude of turbulence in the context of whistler waves is up to as large as about 1% of the ambient magnetic field when T
/T
. The total energy density of the whistler turbulence is adequate for production of relativistic electrons in solar flares through stochastic acceleration. 相似文献
83.
Jun-Ichi Sakai 《Astrophysics and Space Science》1973,23(2):285-300
Nonlinear magnetosonic waves propagating in a magnetic neutral sheet are investigated within the framework of a fluid model. It is shown that the behavior of the magnetosonic waves is governed by a ‘modified Burgers equation’ with an additional termc(η)? due to the relevant slowly varying background plasma parameter (density or magnetic field), $$\frac{{\partial \phi }}{{\partial \eta }}$$ where ?(ξ, η) is the amplitude of the wave, \(\xi = \int {k_x } {\text{d}}x + k_y y - \omega t\) , and η=εx is the coordinate stretched by a smallness parameter ε. When we consider fast magnetosonic waves propagating toward the neutral region across the magnetic field, they grow and undergo rapid steepening after passing through the neutral region; i.e., shock formation is promoted by the background inhomogeneity. By the numerical computation of the above equation, the time evolution is examined for two initial disturbances, the pulse type (gaussian) and the wave train type (sinusoidal wave). The relevance of the interactions between the magnetosonic shock waves and the neutral sheet plasma to a triggering mechanism of sympathetic flares is also suggested. 相似文献
84.
Khang Dang Kyoji Sassa Hiroshi Fukuoka Naoki Sakai Yuji Sato Kaoru Takara Lam Huu Quang Doan Huy Loi Pham Van Tien Nguyen Duc Ha 《Landslides》2016,13(6):1525-1534
Around hundred landslides were triggered by the Kumamoto earthquakes in April 2016, causing fatalities and serious damage to properties in Minamiaso village, Kumamoto Prefecture, Japan. The landslides included many rapid and long-runout landslides which were responsible for much of the damage. To understand the mechanism of these earthquake-triggered landslides, we carried out field investigations with an unmanned aerial vehicle to obtain DSM and took samples from two major landslides (Takanodai landslide and Aso-ohashi landslide) to measure parameters of the initiation and the motion of landslides. A series of ring-shear tests and computer simulations were conducted using a measured Kumamoto earthquake acceleration record from KNet station KMM005, 10 km west of Aso-ohashi landslide. The research results supported our assumed mechanism of sliding-surface liquefaction for the rapid and long-runout motion of these landslides. 相似文献
85.
Atsushi Nozaki Ryuichi Majima Koji Kameo Saburo Sakai Atsuro Kouda Shungo Kawagata Hideki Wada Hiroshi Kitazato 《Island Arc》2014,23(2):157-179
We present field and core observations, nannofossil biostratigraphy, and stable oxygen isotope fluctuations in foraminiferal tests to describe the geology and to construct an age model of the Lower Pleistocene Nojima, Ofuna, and Koshiba Formations (in ascending order) of the middle Kazusa Group, a forearc basin‐fill succession, exposed on the northern Miura Peninsula on the Pacific side of central Japan. In the study area, the Nojima Formation is composed of sandy mudstone and alternating sandy mudstone and mudstone, the Ofuna Formation of massive mudstone, and the Koshiba Formation of sandy mudstone, muddy sandstone, and sandstone. The Kazusa Group contains many tuff beds that are characteristic of forearc deposits. Thirty‐six of those tuff beds have characteristic lithologies and stratigraphic positions that allow them to be traced over considerable distances. Examination of calcareous nannofossils revealed three nannofossil datum planes in the sequences: datum 10 (first appearance of large Gephyrocapsa), datum 11 (first appearance of Gephyrocapsa oceanica), and datum 12 (first appearance of Gephyrocapsa caribbeanica). Stable oxygen isotope data from the tests of the planktonic foraminifer Globorotalia inflata extracted from cores were measured to identify the stratigraphic fluctuations of oxygen isotope ratios that are controlled by glacial–interglacial cycles. The observed fluctuations were assigned to marine isotope stages (MISs) 49–61 on the basis of correlations of the fluctuations with nannofossil datum planes. Using the age model obtained, we estimated the ages of 24 tuff beds. Among these, the SKT‐11 and SKT‐12 tuff beds have been correlated with the Kd25 and Kd24 tuff beds, respectively, of the Kiwada Formation on the Boso Peninsula. The Kd25 and Kd24 tuff beds are widely recognized in Pleistocene strata in Japan. We used our age model to date SKT‐11 at 1573 ka and SKT‐12 at 1543 ka. 相似文献
86.
Seiichiro Ioka Toshiaki Sakai Toshifumi Igarashi Yoji Ishijima 《Environmental Earth Sciences》2011,64(1):143-149
The in situ redox potential (Eh) in anoxic groundwater with high methane and iron contents (approximately 12.3 and 28.4 mg/L,
respectively) was potentiometrically measured to identify the processes that control Eh. The measured Eh ranged from −213
to −187 mV; it had an inverse correlation with the concentration of methane and no correlation with that of iron. The saturation
indices indicate that goethite and amorphous FeS were nearly at solubility equilibrium. A comparison of the measured Eh with
those calculated for the particular redox pairs indicates that either Fe2+/FeOOH or CH4/CO2, but not sulfur redox pairs, controlled the measured Eh. The inverse relationship between measured Eh and methane concentration
suggests possible control of the redox conditions by the CH4/CO2 redox pair. Furthermore, the equilibrium solubility state of goethite, which has higher crystallinity and lower solubility
than Fe(OH)3 indicates that the iron reaction was electrochemically irreversible. This further supports the contribution of the CH4/CO2 pair to controlling the measured Eh of groundwater. 相似文献
87.
We present the results of 3-D MHD simulations of collisions between an equilibrium current and a plasmoid. Three typical equilibrium configurations were analyzed. Our simulation results show that when a plasmoid approaches a current loop, an active region is created in front of the plasmoid bounded on the front side by a bow shock wave and on the back side by a reverse shock wave. The collision process modifies the current system and a strong electric field is also induced in the active region. An additional magnetic field generated by the induced current upsets the initial equilibrium condition. As a result, the whole loop is compressed and heated. We found that when the plasmoid approaches the loop, before reaching it the induced electric field amounts to its maximum value. The current loop is curved under the collision. The core of the plasmoid can not drive into the loop, it is sprung back by a magnetic counterpressure. This collision process between a plasmoid and a current loop may be responsible for the triggering of a solar flare observed by Yohkoh. 相似文献
88.
Jun-Ichi Sakai 《Solar physics》1996,169(2):367-376
It is shown by using a 3-D resistive MHD simulation code, taking into account the recombination effect, that magnetic reconnection during collision of two current loops can be enhanced by recombination. It is also shown that the temperature in the thin current sheet formed between two loops increases from few to about thirty times larger than a case of no recombination, depending on both the plasma beta and the strength of recombination. The simulation results obtained here may be applicable for a mechanism of chromospheric heating and as an explanation of X-ray bright points as well as solar flares observed in the chromosphere.Dedicated to Cornelis de Jager 相似文献
89.
90.
We studied the acceleration conditions in the small but fairly energetic flare of May 21, 1984 at 1326 UT. The most pronounced aspect of this flare was a series of 13 microwave/X-ray spikes, each lasting for about 0.1 s. A previous study has shown that each of these was due to a series of successive sudden formations of small plasma knots of high-energy particles. Each of these knots lost its energy in about 50 ms. In the present study we show that these knots can originate by the process of X-type (3-D) flux tube coalescence. The predicted rise time (30 to 50 ms) and energy are in good agreement with the observationally derived parameters. 相似文献