首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   5篇
测绘学   2篇
大气科学   5篇
地球物理   41篇
地质学   34篇
海洋学   16篇
天文学   39篇
综合类   1篇
自然地理   7篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   10篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
51.
Evaluation of the degrees of structural damage suffered by high‐rise residential buildings after being subjected to strong ground motions is extremely important to the development of life continuity planning for building residents. However, these evaluations cannot be based on strong‐motion records alone, because earthquake observation equipment is not installed in most such buildings in Japan. In this study, we propose simple equations for estimating the stiffness degradation rate and the peak inter‐story drift ratio (PIDR) by using ambient vibration records instead of strong‐motion records when high‐rise RC buildings are subjected to a severe earthquake. More specifically, we propose one equation that relates the square root of the stiffness degradation rate, which is the ratio of natural frequencies at the maximum response to the preliminary tremor response (elastic state), in strong‐motion records with the ratio of natural frequencies identified from ambient vibrations before and after damage was suffered. We also propose an equation that relates the PIDR with the stiffness degradation rate on the basis of the stiffness‐degrading bilinear restoring force characteristic derived from the strong‐motion records of 13 high‐rise buildings for the 1995 Hyogoken‐Nanbu Earthquake (Mw 6.9) and the 2011 Tohoku‐Oki Earthquake (Mw 9.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
52.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   
53.
Variations in fossil diatom assemblages and their relationship with global and Indian monsoon climate changes for the last 600,000 yr were investigated using a core of ancient lake (Paleo-Kathmandu Lake) sediments drilled at the Kathmandu Basin, Nepal Himalaya. Chronological scales of the core were constructed by tuning pollen wet and dry index records to the SPECMAP δ18O stack record. Examinations of biogenic silica contents and fossil diatom assemblages revealed that variations in productivity and compositions of diatom assemblages were closely linked with global and Indian monsoon climate changes on glacial and interglacial time scales. When summer monsoonal rainfall increased during interglacials (interstadials), diatom productivity increased because of increased inputs of terrestrial nutrients into the lake. When summer monsoonal rainfall reduced and/or winter monsoonal aridification enhanced during glacials (stadials), productivity of the diatoms decreased and lake-level falling brought about changes in compositions of diatom assemblages. Monospecific assemblages by unique Cyclotella kathmanduensis and Puncticulata versiformis appeared during about 590 to 390 ka. This might be attributed to evolutionary fine-tuning of diatom assemblages to specific lake environmental conditions. Additionally, low-amplitude precessional variations in monsoon climate and less lake-level changes may have also allowed both species to dominate over the long periods.  相似文献   
54.
A model of two-current-loop collisions is presented to explain the impulsive nature of solar flares. From MHD equations considering the gravity and resistivity effects we find self-consistent expressions and a set of equations governing the behavior of all physical quantities just after magnetic reconnection has taken place. Numerical simulations have revealed that the most important parameters of the problem are the plasma and the ratio of initial values of pressure gradient in the longitudinal and radial directions. Thus, the low plasma case during aY-type interaction (initial longitudinal pressure gradient is comparable with initial radial pressure gradient) shows a rapid pinch and simultaneous enhancement of all physical quantities, including the electric field components, which are important for high-energy particle acceleration. However, an increase of the plasma causes a weakening of the pinch effect and a decrease of extreme values of all physical quantities. On the other hand, for anX-type collision (initial longitudinal pressure gradient is much greater than initial radial pressure gradient), which is able to provide a jet, the increase of the plasma causes a high velocity jet. As for aI-type collision (initial longitudinal pressure gradient is much less than initial radial pressure gradient) it shows neither jet production nor very strong enhancement of physical quantities. We also consider direct and oblique collisions, taking into account both cases of partial and complete reconnection.  相似文献   
55.
We consider that single loop flares can be caused by the rotation of loop footpoints. Choosing a typical geometry for this case we find from MHD equations self-consistent expressions and a set equations governing behaviour of all physical quantities. Numerical simulations have revealed that under the determined conditions for the initial azimuthal velocity and current the pinch instability takes place. The most important parameters of the problem are the plasma and the ratio of the initial values of longitudinal and poloidal components of the magnetic field-B 1. Thus, calculations show that the critical pinch time increases with the increase ofB 1 and decreases with the increase of plasma . So the most effective flares are probable for the most high loops with strong currents. ForB 1=10 and =0.01 the critical pinch time is 2.5 s. The critical twist angle for magnetic field depends on the initial one. For low intial twist which corresponds to bigB 1 the critical one is more less. For exampleB 1=30 gives 1.8 (when ratio of loop length and radius is 10). Geometrical analysis shows that the present model can explain (for high photospheric rotation) single loop flares taking place on different parts of the loop as on the top of it as closer to one of the footpoints. It depends on the relative rotation momentum of loop footpoints. Subject headings: MHD-Sun:flares.  相似文献   
56.
A 3-D particle simulation of excitation of whistler waves driven by an electron temperature anisotropy (T > T ) is presented. Results show that whistler waves can have appreciable growth driven by the anisotropy. The maximum intensity of the excited whistler waves increases as a quadratic function of the anisotropy. Due to the presence of a threshold, one needs a relatively large electron temperature anisotropy above threshold to generate large-amplitude whistler waves. The average amplitude of turbulence in the context of whistler waves is up to as large as about 1% of the ambient magnetic field when T /T . The total energy density of the whistler turbulence is adequate for production of relativistic electrons in solar flares through stochastic acceleration.  相似文献   
57.
We present a model for high-energy solar flare explosions driven by 3-dimensional X-type current loop coalescence. The 3-dimensional X-type current loop coalescence, where two crossed flux-tubes interact at one point, is a fundamentally new process as compared to the 1-D and 2-D cases studied earlier. This process is studied by a first-order approach of the relevant variables near the point of coalescence; it appears to yield reliable information in a sufficiently large area around this point. It is shown that, following a strong plasma collapse due to the pinch effect, a point-like plasma explosion can be driven while fast magnetosonic shock waves can also be excited. We found that the conditions in the area producing the remarkable flare bursts of 21 May, 1984 were indeed such that the many flare spikes could have been due to 3-D explosive X-type current loop coalescence. We also show, by studying the conditions of shock formation in a gamma ray flare, that the time delay of -rays from the impulsive phase could be the time needed for the shock formation in the flaring region.We draw some general conclusions on the question why certain flares do emit -rays in the MeV energy range, and why other, apparently important and energetic flares, do not. We accentuate the fact that a well-developed high-energy flare has three phases of particle acceleration.  相似文献   
58.
We present results of analytical studies and 2D3V PIC simulations of electron-positron plasma cloud collisions. We concentrate on the problem of quasi-static magnetic field generation. It is shown from linear theory, using relativistic two-fluid equations for electron-positron plasmas, that the generation of a quasi-static magnetic field can be associated with the counter-streaming instability. A two-dimensional relativistic particle simulation provides good agreement with the above linear theory and that, in the nonlinear stage of the instability, about 5.3% of the initial plasma flow energy can be converted to magnetic field energy. It is also shown from the simulation that the quasi-static magnetic field undergoes a collision-less change of structure, leading to large scale, long living structures and the production of high-energy particles. These processes may be important for understanding of production of high-energy particles in the region where two pulsar winds collide. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
59.
Boundary-Layer Meteorology - Known as the heat-mitigation effect, irrigated rice-paddy fields distribute a large fraction of their received energy to the latent heat during the growing season. The...  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号