首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   2篇
大气科学   5篇
地球物理   3篇
地质学   10篇
天文学   6篇
综合类   1篇
  2022年   1篇
  2020年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有25条查询结果,搜索用时 812 毫秒
11.
A study on Lake Væng in Denmark demonstrates a high potential for loading of phosphorous via groundwater to seepage lakes. Groundwater discharges are displayed as an important source of phosphorous to a lake due to: (1) high concentrations in the aquifer just below the lake, and (2) the main flow paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations, stable isotope (δ18O) analyses, temperature profiles and mapping of ice cover distribution. Groundwater–lake interaction was modelled with a 2D conceptual flow model (MODFLOW) with hydrogeology interpreted from catchment multi electrode profiling, on-lake ground-penetrating radar, well logging and borehole data. Discharge was found to be much focused and opposite to expected increase away from the shoreline. The average total phosphorus concentration in discharging groundwater sampled just beneath the lakebed was 0.162 mg TP/l and thereby well over freshwater ecological thresholds (0.043–0.612, median = 0.117 mg TP/l). The study illustrates a direct link between groundwater and lake chemistry.  相似文献   
12.
The need to identify groundwater seepage locations is of great importance for managing both stream water quality and groundwater sourced ecosystems due to their dependency on groundwater‐borne nutrients and temperatures. Although several reconnaissance methods using temperature as tracer exist, these are subjected to limitations related to mainly the spatial and temporal resolution and/or mixing of groundwater and surface water leading to dilution of the temperature differences. Further, some methods, for example, thermal imagery and fiber optic distributed temperature sensing, although relative efficient in detecting temperature differences over larger distances, these are labor‐intensive and costly. Therefore, there is a need for additional cost‐effective methods identifying substantial groundwater seepage locations. We present a method expanding the linear regression of air and stream temperatures by measuring the temperatures in dual‐depth; in the stream column and at the streambed‐water interface (SWI). By doing so, we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept, and coefficient of determination), and the daily water temperature cycle (daily mean temperatures, temperature variance, and the mean diel temperature fluctuation). We show that using metrics from only single‐depth stream temperature measurements are insufficient to identify substantial groundwater seepage locations in a head‐water stream. Conversely, comparing the metrics from dual‐depth temperatures show significant differences; at groundwater seepage locations, temperatures at the SWI merely explain 43–75% of the variation opposed to ? 91% at the corresponding stream column temperatures. In general, at these locations at the SWI, the slopes ( < 0.25) and intercepts ( > 6.5 °C) are substantially lower and higher, respectively, while the mean diel temperature fluctuations ( < 0.98 °C) are decreased compared to remaining locations. The dual‐depth approach was applied in a post‐glacial fluvial setting, where metrics analyses overall corroborated with field measurements of groundwater fluxes and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambeds in such settings.  相似文献   
13.
The effects of finite ion Larmor radius (FLR) corrections, Hall current and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effects of finite electrical resistivity, thermal conductivity and permeability for star formation in interstellar medium have been investigated. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion gets modified into radiative instability criterion. The finite electrical resistivity removes the effect of magnetic field and the viscosity of the medium removes the effect of FLR from the condition of radiative instability. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. Numerical calculation shows stabilizing effect of viscosity, heat-loss function and FLR corrections, and destabilizing effect of finite resistivity and permeability on the thermal instability. The outcome of the problem discussed the formation of star in the interstellar medium.  相似文献   
14.
Genetic algorithm (GA) and support vector machine (SVM) optimization techniques are applied widely in the area of geophysics, civil, biology, mining, and geo-mechanics. Due to its versatility, it is being applied widely in almost every field of engineering. In this paper, the important features of GA and SVM are discussed as well as prediction of longitudinal wave velocity and its advantages over other conventional prediction methods. Longitudinal wave measurement is an indicator of peak particle velocity (PPV) during blasting and is an important parameter to be determined to minimize the damage caused by ground vibrations. The dynamic wave velocity and physico-mechanical properties of rock significantly affect the fracture propagation in rock. GA and SVM models are designed to predict the longitudinal wave velocity induced by ground vibrations. Chaos optimization algorithm has been used in SVM to find the optimal parameters of the model to increase the learning and prediction efficiency. GA model also has been developed and has used an objective function to be minimized. A parametric study for selecting the optimized parameters of GA model was done to select the best value. The mean absolute percentage error for the predicted wave velocity (V) value has been found to be the least (0.258 %) for GA as compared to values obtained by multivariate regression analysis (MVRA), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and SVM.  相似文献   
15.
Using Total Ozone Mapping Spectrometer Aerosol Index (AI) and NCEP/NCAR reanalysis clouds data for the period 1979–1992, the influence of aerosol on the clouds (low and high cloud cover) over the Indo-Gangetic Plain (IGP) in India has been brought out for the first time in the present study. AI shows increasing tendency over the IGP suggesting that aerosol loading over this region increased significantly during the study period. In our analysis, High Cloud Cover (HCC) shows increasing trend and Low Cloud Cover (LCC) shows decreasing trend over the IGP during the same period. During pre-monsoon season when aerosol loading is more, HCC increases in positive correlation with AI. On the other hand, LCC show decreasing trend and is anti-correlated with AI. During summer monsoon, aerosol shows increasing trend but their effect on HCC and LCC is not seen to be significant. Similarly, the role of humidity on aerosol induced changes in HCC and LCC over the IGP region was also analyzed. In the low to moderate humid areas of IGP region (western and middle IGP), increasing AI leads to increase in HCC and decrease in LCC. On the other hand, in high humid areas (eastern IGP), increase in AI does not show any significant effect on HCC, but LCC shows positive trend. Therefore, we strongly argue that increasing aerosol loading enhances Cloud Condensation Nuclei over the region which in turn, alters the microphysical properties of clouds by reducing the size of cloud droplets, and atmospheric humidity controls the aerosol effect on clouds. During the recent period (2005–2010), similar features have also been observed over the IGP region.  相似文献   
16.
Dispersion properties of kinetic Alfvén wave in quantum magnetoplasma are derived. The quantum contribution to the Landau damping of kinetic Alfvén wave is also derived by using linearized Vlasov equation which contains the Bohm quantum potential. Classical Landau damped kinetic Alfvén waves play an important role in turbulence of astrophysical plasmas. The quantum modification in Landau damping of kinetic Alfvén wave can also play a significant role in changing the scaling law of turbulent spectra as well as the formation of damped localized Alfvénic structures in dense astrophysical plasmas.  相似文献   
17.
Earthquake Engineering and Engineering Vibration - In the present study, actual three-dimensional structures are converted into a stick model of multi degree of-freedom (MDOF) systems for...  相似文献   
18.
We are pursuing a project to build a database of phase calibration sources suitable for Giant Metrewave Radio Telescope (GMRT). Here we present the first release of 45 low frequency calibration sources at 235 MHz and 610 MHz. These calibration sources are broadly divided into quasars, radio galaxies and unidentified sources. We provide their flux densities, models for calibration sources, (u,v) plots, final deconvolved restored maps and clean-component lists/files for use in the Astronomical Image Processing System (aips) and the Common Astronomy Software Applications (casa). We also assign a quality factor to each of the calibration sources. These data products are made available online through the GMRT observatory website. In addition we find that (i) these 45 low frequency calibration sources are uniformly distributed in the sky and future efforts to increase the size of the database should populate the sky further, (ii) spectra of these calibration sources are about equally divided between straight, curved and complex shapes, (iii) quasars tend to exhibit flatter radio spectra as compared to the radio galaxies or the unidentified sources, (iv) quasars are also known to be radio variable and hence possibly show complex spectra more frequently, and (v) radio galaxies tend to have steeper spectra, which are possibly due to the large redshifts of distant galaxies causing the shift of spectrum to lower frequencies.  相似文献   
19.
Three distinct alkaline magmas, represented by shonkinite, lamprophyre and alkali basalt dykes, characterize a significant magmatic expression of rift-related mantle-derived igneous activity in the Mesoproterozoic Prakasam Alkaline Province, SE India. In the present study we have estimated emplacement velocities (ascent rates) for these three varied alkaline magmas and compared with other silicate magmas to explore composition control on the ascent rates. The alkaline dykes have variable widths and lengths with none of the dykes wider than 1 m. The shonkinites are fine- to medium-grained rocks with clinopyroxene, phologopite, amphibole, K-feldspar perthite and nepheline as essential minerals. They exhibit equigranular hypidiomorphic to foliated textures. Lamprophyres and alkali basalts characteristically show porphyritic textures. Olivine, clinopyroxene, amphibole and biotite are distinct phenocrysts in lamprophyres whereas olivine, clinopyroxene and plagioclase form the phenocrystic mineralogy in the alkali basalts. The calculated densities [2.54–2.71 g/cc for shonkinite; 2.61–2.78 g/cc for lamprophyre; 2.66–2.74 g/cc for alkali basalt] and viscosities [3.11–3.39 Pa s for shonkinite; 3.01–3.28 Pa s for lamprophyre; 2.72–3.09 Pa s for alkali basalt] are utilized to compute velocities (ascent rates) of the three alkaline magmas. Since the lamprophyres and alkali basalts are crystal-laden, we have also calculated effective viscosities to infer crystal control on the velocities. Twenty percent of crystals in the magma increase the viscosity by 2.7 times consequently decrease ascent rate by 2.7 times compared to the crystal-free magmas. The computed ascent rates range from 0.11–2.13 m/sec, 0.23–2.77 m/sec and 1.16–2.89 m/sec for shonkinite, lamprophyre and alkali basalt magmas respectively. Ascent rates increase with the width of the dykes and density difference, and decrease with magma viscosity and proportion of crystals. If a constant width of 1 m is assumed in the magma-filled dyke propagation model, then the sequence of emplacement velocities in the decreasing order is alkaline magmas (4.68–15.31 m/sec) > ultramafic-mafic magmas (3.81–4.30 m/sec) > intermediate-felsic magmas (1.76–2.56 m/sec). We propose that SiO2 content in the terrestrial magmas can be modeled as a semi-quantitative “geospeedometer” of the magma ascent rates.  相似文献   
20.
Sundarban is a largest mangrove forest delta developed along the NE-SW direction covering parts of India and Bangladesh. Little work has been done on Indian part of Sundarban in respect of heterogeneity in channel morphology which could be mostly due to the effect of tilting and basin subsidence. These changes might have played a major role on development of high marshes, which offers a congenial environment for survival of Haplophragmoides wilberti, Jadammina macrescens, Trochammina inflata, and Miliammina fusca. These marsh benthonic foraminiferal assemblages provide a direct evidence of recent past sea level changes. To establish the depositional pattern and their effects rendered by merciless changing environment, 11 pit sections have been excavated along three E-W transects from Indian Sundarban. Depth of these pit sections varies from 2 to 3 m. Generally, top 20 cm sediment (in pit section W-1 to W-11) deposited under the intertidal environment, as indicated by the presence of Ammonia tepida. However, sediment below 20 cm in some of the pit sections (W-3 and W-5) exhibits fresh water signatures as indicated by the presence of Charophytes algae. In other pit sections (W-1, W-2, W-6, W-7, W-8, W-9 and W-11), the intertidal assemblage is noticed just above the upper marshes assemblage and vice versa, signifying that depositional environment is in proximity to the mangrove dominated area as indicated by the presence of marsh benthonic foraminiferal assemblage containing T. inflata, H. wilberti, Haplophragmoides sp., J. macrescens and M. fusca. Bottom sediment in most of the pit sections from south to north have different depositional environment with alternate presence of intertidal to subtidal faunal assemblages. The peculiar presence of intertidal assemblage above the upper marshes assemblages in recent sediment points towards the theory of submergence due to relative rise in the sea level. But the effect of relative sea level rise is not uniform throughout the area because of differential subsidence due to varied rate of sediment supply (0.5 to 3.3 cm/year) and eastward tilting of the basin. Based on the upper marshes benthonic foraminiferal assemblage and radiocarbon age (in W-1 at 100 cm ~?150 years age), the average subsidence rate as recorded is approximately 0.3 to 0.5 cm/year. Hence, such depositional sequence conjectures that the Indian part of Sundarban is undergoing a phase of submergence concomitant to basin subsidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号