首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
地球物理   2篇
地质学   22篇
海洋学   4篇
天文学   7篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   5篇
  2004年   2篇
  2003年   1篇
  2001年   4篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
21.
ABSTRACT

The grounding of the MV Rena has highlighted the lack of information concerning the effects of oil-related compounds on New Zealand marine life. Yellowtail kingfish (YTK), Seriola lalandi, embryos were exposed in static incubations to the water-accommodated fraction (WAF) of Rena heavy fuel oil as well as a similar preparation treated with the commercial dispersant Corexit 9500. Mortality in WAF treatments generally increased in association with total polycyclic aromatic hydrocarbon (tPAH) concentration over a 24-h period. Physical abnormalities were observed in some of the larvae exposed to WAF for 48 h. There was no survival in dispersed oil treatments after 24 h of exposure. These treatments had greater tPAH concentrations (2–53?µgL?1) than equivalent WAF dilutions (0.2–1.5?µgL?1?tPAH). Indications are that significant morbidity is induced in YTK at ecologically relevant tPAH concentrations. This highlights the need for further research into oil and dispersant toxicity in New Zealand marine species.  相似文献   
22.
The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470°C and 1.4 GPa, 530°C, when the penetrative s2-foliation was formed. The average age of garnet crystallization of 390 ± 2 Ma (2σ) was determined from three four-point Lu–Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560°C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An 40Ar/39Ar plateau age of white mica at 353 ± 1 Ma (1σ) indicates the time of cooling below 350–400°C. These temperatures were attained at pressures of 0.2–0.3 GPa, indicative of an average exhumation rate of ≥1 mm/a for the period 390–353 Ma. Late hydrous influx at 0.1–0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284–295 Ma, the entire basement cooled below 280°C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10–12°C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent–continent collisional setting.  相似文献   
23.
The phenomenon of deficient electron microprobe analyses, with sums of analyzed constituents often below 95 wt%, is assigned to the analysis of altered, porous minerals. With the example of three zircon populations we show that low totals are related to textural features (i.e., numerous pores of tens to hundreds of nanometers size) as well as to the chemical composition (i.e., water content well within the wt% range, which may affect partial sample degradation under the electron beam). The formation of the spongy texture is explained by the alteration of a previously radiation-damaged and, thus, volume-expanded material in a fluid-driven replacement reaction. The smaller volume of the reaction product (crystalline, non volume-expanded zircon) accounts for the formation of numerous voids and pores, which are perfect candidates for the incorporation of water. The alteration has also resulted in uptake of non-formula elements such as Al, P, Ca, Fe, Y, and REEs whereas Si and Zr are depleted. In one case, strong uptake of non-radiogenic Pb in altered zircon was observed. Because porous, low-total zircon has formed in secondary alteration process, its occurrence can be considered as an indicator of a secondary alteration history of the host rock. Low-total zircon is easily recognized by very low electron back-scatter intensities, which are closely related to the two main causes of the analytical shortfall (i.e., water content and porosity) and often lowered furthermore by the presence of light non-formula elements (especially P and Fe) up to the wt% range.  相似文献   
24.
We examine the infrared properties of 43 high-redshift (0.1 < z < 1.2), infrared-luminous galaxies in the Extended Groth Strip (EGS), selected by a deep 70 μm survey with the Multiband Imaging Photometer on Spitzer (MIPS). In addition and with reference to starburst-type spectral energy distributions (SEDs), we derive a set of equations for estimating the total infrared luminosity ( L IR) in the range 8–1000 μm using photometry from at least one MIPS band. 42 out of 43 of our sources' optical/infrared SEDs (λobserved < 160 μm) are starburst type, with only one object displaying a prominent power-law near-infrared continuum. For a quantitative analysis, models of radiation transfer in dusty media are fit on to the infrared photometry, revealing that the majority of galaxies are represented by high extinction, A v > 35, and for a large fraction (∼50 per cent) the SED turns over into the Rayleigh–Jeans regime at wavelengths longward of 90 μm. For comparison, we also fit semi-empirical templates based on local galaxy data; however, these underestimate the far-infrared SED shape by a factor of at least 2 and in extreme cases up to 10 for the majority (∼70 per cent) of the sources. Further investigation of SED characteristics reveals that the mid-infrared (70/24 μm) continuum slope is decoupled from various galaxy properties such as the total infrared luminosity and far-infrared peak, quantified by the L 160/ L 70 ratio. In view of these results, we propose that these high-redshift galaxies have different properties to their local counterparts, in the sense that large amounts of dust cause heavy obscuration and are responsible for an additional cold emissive component, appearing as a far-infrared excess in their SEDs.  相似文献   
25.
Petrological arguments show that regionally developed low- to medium-pressure, high-temperature granulite facies metamorphism may critically enhance the lowering of crustal density with depth. This leads to gravitational instability of homogeneously thickened continental crust, mainly due to changes in mineral assemblages and the thermal expansion of minerals in conjunction with the exponential lowering of the effective viscosity of rocks with increasing temperature. It is argued that crustal processes of gravitational redistribution (crustal diapirism) contributing to the exhumation of granulite facies rocks may be activated in this way.  相似文献   
26.
27.
Pseudosections for two sediments and one basalt calculated in the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–H2O for the P–T range 10 to 35 kbar, 300 to 900°C give useful insights into the amount of H2O released from oceanic crust in subduction zones. In cold subduction zones (20 kbar–300°C to 35 kbar–500°C) hydrous minerals storing 3 to 4 wt% H2O are still present in metasediments at depths of 120 km. In the same environment, metabasite releases 1 wt% H2O in the depth range 100 to 120 km, but 4.5 wt% H2O is transported to greater depths. In hot subduction zones (300°C hotter than the cold subduction zone at 100 km depth), dehydration events of metasediments in the depth range 50 to 80 km correspond to the breakdown of chlorite and paragonite. In the calculations no further water is released at greater depths because the modal content of phengite, the only hydrous mineral phase at these depths, remains almost constant. For the same P–T path, metabasite shows continuous dehydration between 40 and 80 km releasing almost 3 wt% H2O. At 120 km depth less than 0.4 wt% of H2O remains. In an average modern subduction zone (~6°C/km) most dehydration of sediments occurs at depths of 70 to 100 km and that of basalts at depths of 80 to 120 km. Only 1.3 wt% H2O in metasediments and 1.6 wt% H2O in metabasalt has the potential to be subducted to depths greater than 120 km. The dehydration behavior of sediments concurs with the generally held idea that subduction zone fluids are most effectively transported to great depths by cold subduction. In hot subduction zones, such as those characteristic of early Earth, most H2O carried by oceanic crust is liberated at depths less than 120 km and, thus, would not contribute to island‐arc magmatism.  相似文献   
28.
29.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号