首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82799篇
  免费   1135篇
  国内免费   1582篇
测绘学   2915篇
大气科学   6230篇
地球物理   16042篇
地质学   32427篇
海洋学   6296篇
天文学   15236篇
综合类   2376篇
自然地理   3994篇
  2022年   426篇
  2021年   759篇
  2020年   783篇
  2019年   808篇
  2018年   6182篇
  2017年   5422篇
  2016年   4602篇
  2015年   1454篇
  2014年   2181篇
  2013年   3296篇
  2012年   3063篇
  2011年   5149篇
  2010年   4216篇
  2009年   5134篇
  2008年   4335篇
  2007年   4718篇
  2006年   2478篇
  2005年   2030篇
  2004年   2183篇
  2003年   2072篇
  2002年   1851篇
  2001年   1478篇
  2000年   1378篇
  1999年   1111篇
  1998年   1182篇
  1997年   1040篇
  1996年   914篇
  1995年   849篇
  1994年   769篇
  1993年   662篇
  1992年   647篇
  1991年   642篇
  1990年   669篇
  1989年   539篇
  1988年   548篇
  1987年   579篇
  1986年   525篇
  1985年   657篇
  1984年   725篇
  1983年   659篇
  1982年   608篇
  1981年   557篇
  1980年   531篇
  1979年   527篇
  1978年   512篇
  1977年   408篇
  1976年   380篇
  1975年   407篇
  1974年   351篇
  1973年   388篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
41.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   
42.
When viewed from the air, Scottish ‘hummocky moraine’ can be resolved into a series of linear ridges that resemble those found at the margins of actively retreating glaciers today. Recent work has supported the interpretation of these linear ridges as ice-marginal landforms and the authors believe that the majority of ‘hummocky moraine’ deposits can be interpreted in this way. Consequently the pattern of deglaciation can be established fairly precisely from the pattern of linear ridges. This approach is applied to the landforms of the northern part of the Loch Lomond Stadial ice-field in order to reconstruct the regional pattern of deglaciation. This leads to important inferences about the significance of topographic control during deglaciation and more importantly it provides fresh insight into the environment of the British Isles during the Loch Lomond Stadial.  相似文献   
43.
Summary ?Partial melting of the mantle is polybaric which implies that the phase relations change during partial melting. In addition to the pressure the composition of the melt depends on the melting mode. Various melting models have been suggested. Here the basic phase relations of polybaric batch, percolative, and critical melting are considered, using a simple ternary system. The percolative melts are in equilibrium with their residua, but differ somewhat in composition from those of batch melting. Critical melting is a fractional type of melting where the residuum contain interstitial melt. The critical melts differ in composition from batch melts. The linear trends of peridotites from ophiolites show that the extracted melts had nearly constant compositions, and therefore were extracted within a small pressure interval. A comparison between the trends of mantle peridotite and experimental batch melts suggests strongly that the melt extracted from the peridotites are in equilibrium with their residua. This could suggest that either batch or percolative melting are relevant melting modes for the mantle. However, isotopic disequilibria favor instead a critical mode of melting. This inconsistency can be avoided if the ascending melts are accumulated within a source region and equilibrate with the residuum before the melt is extracted from the source region. The evidence for equilibrium suggests that multisaturation of tholeiitic compositions in PT-diagrams is relevant for estimating pressure and temperature of generation of primary tholeiitic magmas. Received September 2, 2001; revised version accepted March 20, 2002  相似文献   
44.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
45.
46.
47.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
48.
49.
50.
 The yearly nutrient supply from land and atmosphere to the study area in SW Kattegat is 10 900 tons of N and 365 tons of P. This is only few percent of the supply from adjacent marine areas, as the yearly transport through the study area is 218 000 tons of N and 18 250 tons of P. Yearly net deposition makes up 1340 tons of N (on average 2.5 g m–2 yr–1) and 477 ton of P (on average 0.9 g m–2 yr–1). Shallow-water parts of the study area have no net deposition because of frequent (>35% of the year) resuspension. Resuspension frequency in deep water is <1% of the year. Resuspension rates, as averages for the study area, are 10–17 times higher than net deposition rates. Because of resuspension, shallow-water sediments are coarse lag deposits with small amounts of organic matter (1.1%) and nutrients (0.04% N and 0.02% P). Deep-water sediments, in contrast, are fine grained with high levels of organic matter (11.7%) and nutrients (0.43% N and 0.15% P). Laboratory studies showed that resuspension changes the diffusive sediment water fluxes of nutrients, oxygen consumption, and penetration into the sediment. Fluxes of dissolved reactive phosphate from sediment to water after resuspension were negative in organic-rich sediments (13.2% organic matter) with low porosity (56) and close to zero in coarse sediments with a low organic matter content (2.3%) and high porosity (73). Fluxes of inorganic N after resuspension were reduced to 70% and 0–20% in relation to the rates before resuspension, respectively. Received: 10 July 1995 · Accepted: 19 January 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号