首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78637篇
  免费   954篇
  国内免费   1542篇
测绘学   2809篇
大气科学   5866篇
地球物理   14726篇
地质学   30592篇
海洋学   6114篇
天文学   14814篇
综合类   2339篇
自然地理   3873篇
  2022年   380篇
  2021年   662篇
  2020年   703篇
  2019年   740篇
  2018年   6104篇
  2017年   5314篇
  2016年   4396篇
  2015年   1258篇
  2014年   1874篇
  2013年   3004篇
  2012年   2827篇
  2011年   4987篇
  2010年   4050篇
  2009年   4903篇
  2008年   4152篇
  2007年   4641篇
  2006年   2326篇
  2005年   1886篇
  2004年   2107篇
  2003年   2020篇
  2002年   1841篇
  2001年   1464篇
  2000年   1352篇
  1999年   1063篇
  1998年   1103篇
  1997年   981篇
  1996年   850篇
  1995年   818篇
  1994年   719篇
  1993年   630篇
  1992年   609篇
  1991年   616篇
  1990年   647篇
  1989年   509篇
  1988年   513篇
  1987年   542篇
  1986年   504篇
  1985年   635篇
  1984年   706篇
  1983年   612篇
  1982年   578篇
  1981年   539篇
  1980年   499篇
  1979年   486篇
  1978年   478篇
  1977年   378篇
  1976年   368篇
  1975年   374篇
  1974年   331篇
  1973年   351篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
Crimean Astrophysical Observatory. Translated from Astrofizika, Vol. 32, No. 1, pp. 69–83, January–February, 1990.  相似文献   
992.
This is a crucial time in the history of astronomy with major all-sky surveying work being carried out in all spectral bands, as well as in astrometry. The results of this activity are advancing all fields of astrophysical research, from the investigation of exo-planetary systems to the study of the chemical evolution of the Universe. Full sky surveys are available from the radio domain to X-ray wavelengths but not in the ultraviolet range (UV). While large UV missions are currently under discussion within the astrophysical community and at the major Space Agencies, the efficient use of resources requires preparatory work that can fill the UV surveying gap. This article summarizes the research and on-going activities in this field.  相似文献   
993.
The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.  相似文献   
994.
Astrometric observations of microlensing events can be used to obtain important information about lenses. During these events, the shift of the position of the multiple image centroid with respect to the source star location can be measured. This effect, which is expected to occur on scales from micro-arcseconds to milli-arcseconds, depends on the lens-source-observer system physical parameters. Here, we consider the astrometric and photometric observations by space and ground-based telescopes of microlensing events towards the Galactic bulge caused by free floating planets (FFPs). We show that the efficiency of astrometric signal on photometrically detected microlensing events tends to increase for higher FFP masses in our Galaxy. In addition, we estimate that during five years of the Gaia observations, about a dozen of microlensing events caused by FFPs are expected to be detectable.  相似文献   
995.
This paper examines the small-scale solar wind turbulence driven in view of the Alfvén waves subjected to ponderomotive nonlinearity. Filamentation instability is known to take place for the case of dispersive Alfvén wave (DAW) propagating parallel to the ambient magnetic field. The ponderomotive force associated with DAW is responsible for wave localization and these webs of filaments become more intense and irregular as one proceeds along the spatial domain. The ponderomotive force associated with pump changes with pump parameters giving rise to different evolution patterns. This paper studies in detail the nonlinear evolution of filamentation instability introduced by dispersive Alfven waves (DAWs) which becomes dispersive on account of the finite frequency of DAW i.e., pump frequency is comparable to the ion cyclotron frequency. We have explicitly obtained the perturbation dynamics and then examined the impact of pump magnitude on the driven magnetic turbulence using numerical simulation. The results show steepening at small scales with increasing pump amplitude. The compressibility associated with acoustic fluctuations may explain the variation in spectral scaling of solar wind turbulence as observed by Alexandrova et al. (Astrophys. J. 674:1157, 2008).  相似文献   
996.
We report a ~6.1 yr quasi-periodicity for the blazar S5 0716+714 using the radio light curves at 4.8, 8 and 14.5 GHz observed by the University of Michigan Radio Astronomical Observatory (UMRAO) from 1981 to 2012, by means of the Jurkevich, discrete correlation function (DCF) and power spectral analysis techniques. There are a general correlation among light curves at different frequencies and a time lag of \(170\pm 10\) days between 4.8 and 14.5 GHz light curves can be confirmed. We also estimate the orbit parameters assuming a binary black hole system, and the magnetic field strength under the jet comoving frame.  相似文献   
997.
Vinti’s potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti’s spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating \(J_2\), \(J_3\), and generally a partial \(J_4\) in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti’s solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti’s solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti’s solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the \(J_2\) through \(J_5\) terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim–Alfriend state transition matrix, which considers the \(J_2\) perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.  相似文献   
998.
The post-Newtonian approximation for general relativity is widely adopted by the geodesy and astronomy communities. It has been successfully exploited for the inclusion of relativistic effects in practically all geodetic applications and techniques such as satellite/lunar laser ranging and very long baseline interferometry. Presently, the levels of accuracy required in geodetic techniques require that reference frames, planetary and satellite orbits and signal propagation be treated within the post-Newtonian regime. For arbitrary scalar W and vector gravitational potentials \(W^j (j=1,2,3)\), we present a novel derivation of the energy associated with a test particle in the post-Newtonian regime. The integral so obtained appears not to have been given previously in the literature and is deduced through algebraic manipulation on seeking a Jacobi-like integral associated with the standard post-Newtonian equations of motion. The new integral is independently verified through a variational formulation using the post-Newtonian metric components and is subsequently verified by numerical integration of the post-Newtonian equations of motion.  相似文献   
999.
Massive planets form within the lifetime of protoplanetary disks, and therefore, they are subject to orbital migration due to planet–disk interactions. When the first planet reaches the inner edge of the disk, its migration stops and consequently the second planet ends up locked in resonance with the first one. We detail how the resonant trapping works comparing semi-analytical formulae and numerical simulations. We restrict to the case of two equal-mass coplanar planets trapped in first-order resonances, but the method can be easily generalized. We first describe the family of resonant stable equilibrium points (zero-amplitude libration orbits) using series expansions up to different orders in eccentricity as well as a non-expanded Hamiltonian. Then we show that during convergent migration the planets evolve along these families of equilibrium points. Eccentricity damping from the disk leads to a final equilibrium configuration that we predict precisely analytically. The fact that observed multi-exoplanetary systems are rarely seen in resonances suggests that in most cases the resonant configurations achieved by migration become unstable after the removal of the protoplanetary disk. Here we probe the stability of the resonances as a function of planetary mass. For this purpose, we fictitiously increase the masses of resonant planets, adiabatically maintaining the low-amplitude libration regime until instability occurs. We discuss two hypotheses for the instability, that of a low-order secondary resonance of the libration frequency with a fast synodic frequency of the system, and that of minimal approach distance between planets. We show that secondary resonances do not seem to impact resonant systems at low amplitude of libration. Resonant systems are more stable than non-resonant ones for a given minimal distance at close encounters, but we show that the latter nevertheless play the decisive role in the destabilization of resonant pairs. We show evidence that as the planetary mass increases and the minimal distance between planets gets smaller in terms of mutual Hill radius, the region of stability around the resonance center shrinks, until the equilibrium point itself becomes unstable.  相似文献   
1000.
We are totally immersed in the Big Data era and reliable algorithms and methods for data classification are instrumental for astronomical research. Random Forest and Support Vector Machines algorithms have become popular over the last few years and they are widely used for different stellar classification problems. In this article, we explore an alternative supervised classification method scarcely exploited in astronomy, Logistic Regression, that has been applied successfully in other scientific areas, particularly biostatistics. We have applied this method in order to derive membership probabilities for potential T Tauri star candidates from ultraviolet-infrared colour-colour diagrams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号