首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   3篇
大气科学   7篇
地球物理   49篇
地质学   39篇
海洋学   31篇
天文学   24篇
综合类   6篇
自然地理   6篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   10篇
  2007年   12篇
  2006年   13篇
  2005年   10篇
  2004年   11篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
61.
通过青藏高原北部可可西里库赛湖KS-2006孔(深637cm)沉积岩芯总有机碳、总氮含量及沉积物粒度变化的研究,恢复了该地区近4000年来的干湿变化历史.结果表明,该地区近4000年来经历了显著的干湿变化,干旱时段出现在3900-3590cal aBP、3320-2630cal aBP、1720-1420cal aBP及1100-840cal aBP期间:湿润时段出现在3590-3320cal aBP、2630-1720cal aBP、1420-1100cal aBP以及840cal aBP之后小冰期有效降水升高的相对湿润时期.区域对比分析表明库赛湖地区近4000年来的干湿变化受亚洲季风影响;同时,该地区存在明显的中世纪暖期及小冰期的三次降温事件记录.  相似文献   
62.
Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ~1-2Ma. Estimates of extension (~3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.  相似文献   
63.
Following the Acadian Orogeny, Atlantic Canada accommodated several, large, relatively deep lakes within a wrench-fault basin complex called the Maritime Basin. Late Devonian and Tournaisian lakes were hydrologically open, shallow to deep, mainly fresh water bodies. Middle Visean lakes, here collectively called Loch Macumber, were closed, deep, and meromictic. Their deposits comprise the first and thickest of five sequences in the Maritime Basin. Salinity in the loch increased with time from restricted marine or penesaline, to saline. Basin-centre facies consist of a thin, but extensive, sheet of black, peloidal laminated lime mudstones and an overlying thick evaporite complex. The carbonate sheet grades laterally into both laminated to thinly bedded marlstones, siliciclastic sandstones, and microbial, biocementstone mounds. Laminae consist of alternating carbonate and either silty carbonaceous shale or siliciclastic clay and silt. The mudstone and marlstone are locally interbedded with siliciclastic and carbonate turbidites, resedimented (?deep water) breccias, and olistostromes. Seasonal changes in anoxia and/or carbonate production produced rhythmic laminae of carbonate and carbonaceous shale. Carbonate grains consist of silt-sized microbial clots and rare arthropod carapaces and brachiopod shells. The mounds originated as tufa precipitated around subaqueous hydrothermal springs that supported chemosynthetic communities. Resedimentation processes including incipient brecciation, sliding, slumping, debris flows, and turbidity currents were common. The mounds trapped hydrocarbons from the surrounding laminite and sulphides from underlying hydrothermal vents. Increasing salinity with time resulted in sulphate and chloride precipitation that filled the basins and ended the life of Loch Macumber. After the deposition of thick evaporites the topography became less accentuated, the seas less saline, and the faunas more normal marine.  相似文献   
64.
65.
Aquatic biodiversity is commonly linked with environmental variation in lake networks, but less is known about how local factors may influence within-lake biological heterogeneity. Using a combined ecological and multi-proxy palaeoecological approach we investigated long-term changes in the pathways and processes that underlie eutrophication and water depth effects on lake macrophyte and invertebrate communities across three basins in a shallow lake—Castle Lough, Northern Ireland, UK. Contemporary data allow us to assess how macrophyte assemblages vary in composition and heterogeneity according to basin-specific factors (e.g. variation in water depth), while palaeoecological data (macrophytes and co-occurring invertebrates) enable us to infer basin-specific impacts and susceptibilities to nutrient-enrichment. Results indicate that variability in water depth promotes assemblage variation amongst the lake basins, stimulating within-lake macrophyte assemblage heterogeneity and hence higher lake biodiversity. The palaeo-data indicate that eutrophication has acted as a strong homogenising agent of macrophyte and invertebrate diversities and abundances over time at the whole-lake scale. This novel finding strongly suggests that, as eutrophication advances, the influence of water depth on community heterogeneity is gradually eroded and that ultimately a limited set of eutrophication-tolerant species will become homogeneously distributed across the entire lake.  相似文献   
66.
The subtropical and tropical regions of the Pacific Ocean are less productive than other oceanic regions. Although particle association should be an important strategy for heterotrophic prokaryotes to survive in such environments, we have little information on particle-associated (PA) prokaryotes in these regions. The specific aim of this study was to determine bacterial and archaeal community structures in the PA assemblage in comparison to the free-living (FL) assemblage in the North Pacific Subtropical Gyre, the South Pacific Subtropical Gyre, and an eastern equatorial region of the Pacific Ocean. Community profiles and phylogenetic identities were obtained by denaturing gradient gel electrophoresis, 454-pyrosequencing, and cloning followed by Sanger sequencing of 16Sr RNA gene amplicons. The distribution patterns of some abundant groups in three regions and two lifestyles (PA and FL) are shown in this study. Also, the PA community structures of bacteria differed from the FL ones and exhibited higher diversity than the FL ones, while the archaeal community structures did not show significant differences between PA and FL assemblages. We found that specific phylotypes of Gammaproteobacteria and Flavobacteria were abundant in PA bacterial assemblages, suggesting that they prefer to attach and consume particulate organic matter. In summary, the surface seawater PA assemblages represent very different bacterial and archaeal community structures between three different oceanic regions, each of which had distinct PA and FL community structures. These results imply that environmental factors determine microbial community structures.  相似文献   
67.
68.
Organic geochemical data was collected from a KP-2 piston core sample obtained from a mud volcano in the Nankai Trough, off the southeast coast of Japan. The Nankai Trough was investigated geologically and was found to have a large amount of methane hydrates. Biomarkers indicating anaerobic oxidation of methane (AOM) were expected to be found in the sediment of the mud volcano collected by KP-2 core. But the gas chromatography-mass spectrometry (GC-MS) analysis of the samples showed only one biomarker related to the methane-oxidizing Archaea, namely 2,6,10,15,19-pentamethyleicosane (PME), could be detected throughout the KP-2 core. Phytane was predominant in the upper part of the KP-2 core; however, a series of 2,2-dimethylalkanes (2,2-DMAs) were characterized in the lower part of KP-2 core. The individual δ13C values of 2,2-DMAs, which were − 29.1 to − 27.3‰ indicate that the origin of 2,2-DMAs was not related to methane-oxidizing Archaea.  相似文献   
69.
Ryo Nakamura  Eiji Ohtani 《Icarus》2011,211(1):648-654
We have determined the phase relation of the MgSO4-H2O binary system using an externally heated diamond anvil cell in the compositional range of 0-30 wt.% MgSO4, and under temperature and pressure conditions from 298 to 500 K and up to 4.5 GPa. Using our experimental results, we were able to estimate the composition of the ice mantle of the large icy satellites of Jupiter, such as Ganymede.In our experiments, we identified the following phases in the MgSO4-H2O system up to 4 GPa at 298 K: Ices VI and VII, magnesium heptahydrate, MgSO4·7H2O, and a liquid phase. The present phase relations suggest that there may be a deep internal ocean down to a depth about 800 km in the interior of Ganymede.  相似文献   
70.
Abstract The < 6 Ma young Taitao ophiolite, exposed at the westernmost promontory of the Taitao Peninsula, is located approximately 40 km southeast of the Chile triple junction and consists of a complete sequence of oceanic lithosphere. Systematic sampling for paleomagnetic study was performed to understand the complex obduction processes of the ophiolite onto the forearc of the South American Plate. Two representative demagnetization paths of remanent magnetization vectors were observed. One is characterized by stable univectorial demagnetization paths and was observed in volcaniclastic rocks and dyke complexes. Orientations of their remanent magnetization vectors indicate various degrees of counterclockwise rotations. The other is characterized by multivectorial demagnetization paths and was observed in the plutonic units (gabbros and ultramafic rocks). From these, two distinct stable remanent magnetization vectors were isolated; one has high coercivity and the other has low coercivity along the demagnetization paths with little influence of viscous magnetizations. This suggests that the complex deformation history involved at least two rotational events. The clockwise rotation, inferred from high coercivity remanent magnetization vectors, was attributed to a ridge collision event and the counterclockwise rotation, inferred from the low coercivity remanent magnetization vectors, was attributed to an accommodation phase into the South American forearc during obduction and final emplacement of the ophiolite. Folds developed during this period. Paleomagnetic restorations of the internal structures of the plutonic units and dyke complexes suggest that they probably originated in a mid‐oceanic ridge environment near a transform fault. The counterclockwise rotation of the plutonic and dyke complex units during the obduction generated tectonic gaps between these and the basement. The volcaniclastic rocks must have been deposited at nearly their present location, filling the tectonic gaps, as less effect of tectonic rotation was identified on these rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号