首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   5篇
  国内免费   4篇
测绘学   36篇
大气科学   33篇
地球物理   88篇
地质学   189篇
海洋学   13篇
天文学   64篇
综合类   7篇
自然地理   4篇
  2022年   11篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   36篇
  2017年   25篇
  2016年   18篇
  2015年   16篇
  2014年   27篇
  2013年   39篇
  2012年   18篇
  2011年   15篇
  2010年   14篇
  2009年   23篇
  2008年   18篇
  2007年   19篇
  2006年   14篇
  2005年   11篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有434条查询结果,搜索用时 0 毫秒
71.
Hysteresis represents a loop in a rating curve and is a phenomenon which closely resembles that occurring in stress–strain curves used for studying the elastic properties of solid substances in engineering mechanics. Earlier hysteresis‐based studies used for defining floodwave propagation in open channels have qualitatively shown that hysteresis is an index of energy loss during floodwave propagation. Using the concept of elasticity, this paper introduces a new term called flow strain (defined as the ratio of change in discharge to the initial discharge) for investigating hysteresis. The usefulness of this new term is evaluated with use of four dam‐break studies. The study reveals that:
  • 1 flow strain is a function of three wave speeds, Seddon speed, Lagrange speed, and elastic speed;
  • 2 a single linear reservoir concept frequently used in flood routing is a specific variant of the Seddon speed formula;
  • 3 the non‐linear storage–discharge relationship, widely used in overland flow modelling, is a variant of the kinematic wave representation;
  • 4 the discharge ordinates on the recession part of a hydrograph follow a simple first‐order autoregressive form;
  • 5 the hysteresis, phase difference and logarithmic decrement all define attenuation and are indices of energy loss during floodwave propagation.
Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
72.
73.
Biosorption potential of Cedrus deodara sawdust (CDS) in terms of sorption of Zn(II) ion across liquid phase has been evaluated in the present investigation. The surface of the CDS biomass before the sorption of Zn(II) ions seemed to be more porous, non‐crystalline and heterogeneous. The maximum uptake capacity of CDS was 97.39 mg g?1. Sorption of Zn(II) ion on the surface of CDS sawdust was maximum at pH 5, temperature 45°C, initial concentration of Zn(II) ion 100 mg L?1, biomass dose 1 g L?1, contact time 150 min, and agitation rate 160 rpm. Pseudo second‐order kinetics with the highest linear regression coefficient (R2 = 0.99), and lowest values of error functions, i.e., chi (χ2) and sum of square errors (SSE) against pseudo first‐order rate kinetics showed that the sorption of Zn(II) ion on the surface of CDS was mediated by chemosoprtive forces of attraction rather than physical adsorption. Mechanistically, relatively higher proportion of sorption of Zn(II) ion in early phase of contact time was profoundly explained by Bangham's equation and film diffusivity (Df). Intraparticle or pore diffusion (Dp) of Zn(II) ion inside the pores of CDS was rate limiting step at the later stage of contact time. Furthermore, the thermodynamic study on sorption of metal ion delineated the fact that the Zn(II) sorption on the surface of CDS was spontaneous, endothermic together with increased entropy at solid liquid interface.  相似文献   
74.
A new base isolation system using scrap tire rubber pads (STRP) has been introduced for seismic mitigation of ordinary residential buildings. The rubber and the steel reinforcing cords used in manufacturing the tire are the alternative materials of the proposed base isolation system. The steel reinforcing cords represent the steel plates used in conventional laminated rubber bearings. These steel reinforcing cords shall prevent the lateral bulging of the rubber bearing. The proposed base isolation system has no bonding between the superstructure and the foundation beam which allows for rollover deformation. In the first part of the study, the STRP layers were just stacked one on top of another without applying the adhesive. This paper presents loading test as well as finite element analysis (FE analysis) of strip STRP isolators that are subjected to any given combination of static vertical and lateral loads. The results of the static vertical and horizontal loading test conducted on STRP isolators were used to calculate the mechanical properties of the isolators, including stiffness and damping values. The load–displacement relationship of STRP isolators were compared between experimental and FE analysis results and the results were found to be in close agreement. The stress state within the STRP isolators was also analyzed in order to estimate the maximum stress demand in the rubber and steel reinforcing cords. These STRP isolators have several advantages over conventional laminated rubber bearings including superior damping properties, lower incurred cost, light weight and easily available material. This study suggests that using the STRP as low cost base isolation device for ordinary residential buildings is feasible.  相似文献   
75.
A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent ‘n’ were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS‐CN) method and its parameter So is equivalent to the potential maximum retention of the SCS‐CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
76.
Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Niño Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions – Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was ‘less sensitive’ to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. © 2020 John Wiley & Sons, Ltd.  相似文献   
77.
Climate model simulations for the twenty-first century point toward changing characteristics of precipitation. This paper investigates the impact of climate change on precipitation in the Kansabati River basin in India. A downscaling method, based on Bayesian Neural Network (BNN), is applied to project precipitation generated from six Global Climate Models (GCMs) using two scenarios (A2 and B2). Wet and dry spell properties of monthly precipitation series at five meteorologic stations in the Kansabati basin are examined by plotting successive wet and dry durations (in months) against their number of occurrences on a double-logarithmic paper. Straight-line relationships on such graphs show that power laws govern the pattern of successive persistent wet and dry monthly spells. Comparison of power-law behaviors provides useful interpretation about the temporal precipitation pattern. The impact of low-frequency precipitation variability on the characteristics of wet and dry spells is also evaluated using continuous wavelet transforms. It is found that inter-annual cycles play an important role in the formation of wet and dry spells.  相似文献   
78.
Bulletin of Earthquake Engineering - Seismic fragility, loss and resilience provide a rational basis for decision making in new construction/retrofitting. The inter-storey-isolation (ISI) is a...  相似文献   
79.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   
80.
The surface of the bacterial cells before the biosorption of Zn(II) ion has been found rough, heterogeneous, and non‐crystalline together with tremendous protrusions and negatively charged functional groups. The bacterium was characterized as rod shaped with Gram‐negative type of cell wall structure. In reaction dynamics, pseudo‐second‐order kinetics with higher linear correlation coefficient (R2) ranging between 0.97 and 0.99, lower sum of square errors (SSE) (0.035–0.081) and chi (χ2) (0.0013–0.009) provided a better explanation of sorption of Zn(II) ion on bacterium surface as compared to pseudo‐first‐order model. The removal of Zn(II) was governed by both film and intra‐particle diffusion at onset and later stage of sorption of metal ion on the surface of bacterial cells. The R2 (0.92–0.94) for intra‐particle diffusion model was quite higher with lower values of SSE (9.56–16.33) and chi (χ2) (11.26–19.65) against the Bangham's model. The positive value of ΔH (16.628 × 10?6 kJ/mol) and ΔS (5320.90 kJ/mol/K) showed that the biosorption of Zn(II) ion across liquid phase on bacterial surface was endothermic with increased randomness at solid–liquid interface. The negative values of ΔG demarcated the whole process as spontaneous in nature. In the present work, the distribution coefficient was found to be > 0.5 at various temperature ranges. At the attainment of equilibrium, the residual concentration of Zn(II) ion in liquid phase was around 0.6 mg/L, which was much below the limit described by United States Environmental Protection Agency (USEPA), i.e. 5 mg/L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号