首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   9篇
  国内免费   5篇
测绘学   17篇
大气科学   49篇
地球物理   94篇
地质学   225篇
海洋学   13篇
天文学   50篇
综合类   5篇
自然地理   53篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   15篇
  2017年   14篇
  2016年   14篇
  2015年   17篇
  2014年   19篇
  2013年   25篇
  2012年   23篇
  2011年   25篇
  2010年   19篇
  2009年   18篇
  2008年   20篇
  2007年   25篇
  2006年   23篇
  2005年   13篇
  2004年   19篇
  2003年   17篇
  2002年   10篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   9篇
  1996年   5篇
  1995年   15篇
  1993年   5篇
  1992年   2篇
  1991年   6篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
  1967年   2篇
  1966年   4篇
排序方式: 共有506条查询结果,搜索用时 415 毫秒
331.
The temporal changes of the Earth’s gravity field can be observed on a global scale with low–low satellite-to-satellite tracking (SST) missions. One of the largest restrictions of the quality of low–low SST gravity fields is temporal aliasing. This study investigates the design of optimal satellite orbits for temporal gravity retrieval regarding temporal aliasing. We present a method with which optimal altitudes for the orbit of a gravity satellite mission with the goal of temporal gravity retrieval can be identified. The two basic orbit frequencies, the rates of the argument of the latitude and the ascending node, determine the mapping of the signal measured along the orbit onto the spherical harmonic (SH) spectrum. The main spectral characteristics of temporal aliasing are maxima at specific SH orders. The magnitude of the effects depends on the basic frequencies. This is analyzed with numerical low–low SST closed-loop simulations including both tidal and non-tidal background models and GRACE-like observation noise. Analyses of actual monthly GRACE solutions show that these characteristics do not depend on the low–low SST processing method. Optimal orbits are found in specific altitude bands. The best altitude bands regarding temporal aliasing for polar low Earth orbiters (LEOs) are around 301, 365, 421 and 487 km. In these bands, major aliasing effects do not occur for SH degrees and orders below 70. This study gives unique and in-depth insights into the mechanism of temporal aliasing. As it provides an important orbit design approach, it is independent of any (post-) processing method to reduce temporal aliasing.  相似文献   
332.
The reprocessing of Gravity field and steady-state Ocean Circulation Explorer (GOCE) Level 1b gradiometer and star tracker data applying upgraded processing methods leads to improved gravity gradient and attitude products. The impact of these enhanced products on GOCE-only and combined GOCE+GRACE (Gravity Recovery and Climate Experiment) gravity field models is analyzed in detail, based on a two-months data period of Nov. and Dec. 2009, and applying a rigorous gravity field solution of full normal equations. Gravity field models that are based only on GOCE gradiometer data benefit most, especially in the low to medium degree range of the harmonic spectrum, but also for specific groups of harmonic coefficients around order 16 and its integer multiples, related to the satellite’s revolution frequency. However, due to the fact that also (near-)sectorial coefficients are significantly improved up to high degrees (which is caused mainly by an enhanced second derivative in Y direction of the gravitational potential — VYY), also combined gravity field models, including either GOCE orbit information or GRACE data, show improvements of more than 10% compared to the use of original gravity gradient data. Finally, the resulting gradiometry-only, GOCE-only and GOCE+GRACE global gravity field models have been externally validated by independent GPS/levelling observations in selected regions. In conclusion, it can be expected that several applications will benefit from the better quality of data and resulting GOCE and combined gravity field models.  相似文献   
333.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
334.
DUAL will study the origin and evolution of the elements and explores new frontiers of physics: extreme energies that drive powerful stellar explosions and accelerate particles to macroscopic energies; extreme densities that modify the laws of physics around the most compact objects known; and extreme fields that influence matter in a way that is unknown on Earth. The variability of these extreme objects requires continuous all-sky coverage, while detailed study demands an improvement in sensitivity over previous technologies by at least an order of magnitude. The DUAL payload is composed of an All-Sky Compton Imager (ASCI), and two optical modules, the Laue-Lens Optic (LLO) and the Coded-Mask Optic (CMO). The ASCI serves dual roles simultaneously, both as an optimal focal-plane sensor for deep observations with the optical modules and as a sensitive true all-sky telescope in its own right for all-sky surveys and monitoring. While the optical modules are located on the main satellite, the All-Sky Compton Imager is situated on a deployable structure at a distance of 30?m from the satellite. This configuration not only permits to maintain the less massive payload at the focal distance, it also greatly reduces the spacecraft-induced detector background, and, above all it provides ASCI with a continuous all-sky exposure.  相似文献   
335.
Advances in the chemical and isotopic characterisation of geological and environmental materials can often be ascribed to technological improvements in analytical hardware. Equally, the creation of novel methods of data acquisition and interpretation, including access to better reference materials, can also be crucial components enabling important breakthroughs. This biennial review highlights key advances in either instrumentation or data acquisition and treatment, which have appeared since January 2010. This review is based on the assessments by scientists prominent in each of the given analytical fields; it is not intended as an exhaustive summary, but rather provides insight from experts of the most significant advances and trends in their given field of expertise. In contrast to earlier reviews, this presentation has been formulated into a unified work, providing a single source covering a broad spectrum of geoanalytical techniques. Additionally, some themes that were not previously emphasised, in particular thermal ionisation mass spectrometry, accelerator‐based methods and vibrational spectroscopy, are also presented in detail.  相似文献   
336.
Ocean Dynamics - Various uncertainties exist in a hindcast due to the inabilities of numerical models to resolve all the complicated atmosphere-sea interactions, and the lack of certain ground...  相似文献   
337.
ABSTRACT Sedimentary cycles recorded in young sediments are often attributed to fluctuations of the Earth's climate on a 104−106-year scale which in turn is governed by periodic variations in solar insolation linked to orbital (Milankovitch) parameters. A spectacular example of cyclic stratal patterns in ancient deposits is the Middle Triassic Latemar carbonate platform (W Dolomites, N Italy). Based on spectral analyses from previous studies, a superimposition of precession (∼20 ka) and eccentricity (∼100 ka) controlled sea-level fluctuations has been suggested to account for the stacking hierarchy at Latemar, with ∼20 ka being assigned to each highest-order depositional cycle. Zircon U–Pb isotopic ages from volcanic-ash layers within the cyclic succession, corroborated by biostratigraphic constraints, suggest that the average time interval for every individual cycle is significantly smaller than the shortest Milankovitch period and therefore challenge previously published interpretations relating distinct spectral peaks to the above mentioned hierarchy. However, our new spectral data indicate that cyclicities resembling Milankovitch characteristics might exist, but on an entirely different scale. Our findings show that frequency spectra should only be interpreted in combination with robust age control. They also encourage the search for complementary mechanisms controlling carbonate deposition.  相似文献   
338.
339.
The title reaction was studied by photolyzing mixtures of Cl2 and SO2 with and without O2 present in an atmosphere of N2, using Fourier transform infrared spectrophotometry to monitor reactants and products. In the absence of oxygen, sulfur dioxide is quantitatively converted to sulfuryl chloride. With 10 to 150 Torr O2 present H2SO4 is produced as well as SO2Cl2. When a number of speculative reactions inferred from these experiments are added to a published model for Venus stratospheric chemistry, it emerges that SO2Cl2 is a key reservoir species for chlorine and that the reaction between Cl and So2 provides an important cycle for destroying O2 and converting SO2 to H2So4. The modified model could provide a possible solution to the photochemistry of the Venus stratosphere if the mixing ratio of chlorine on Venus were as high as 8 ppm.  相似文献   
340.
The vertical distribution of foraminifera, testate amoebae and diatoms was investigated in saltmarshes in the Taf estuary (south Wales), the Erme estuary (south Devon) and the Brancaster marshes (north Norfolk), to assess the use of multiproxy indicators in sea‐level reconstructions. A total of 116 samples were subjected to regression analyses, using the program calibrate, with duration of tidal flooding as the dependent variable. We found that the relationship between flooding duration and taxa was strongest for diatoms and testate amoebae and weakest for foraminifera. The vertical range of testate amoebae in saltmarshes is small. Their lower tolerance limit in present‐day saltmarshes occurs where tides cover the marsh less than a combined total of 7 days (1.9%) in a year. However, they are important sea‐level indicators because information for sea‐level reconstruction is best derived from sediments that originate in the highest part of the intertidal zone. Diatoms span the entire sampled range in intertidal and supratidal areas, whereas the upper limit of foraminifera is found very close to the highest astronomical tide level. Local training sets provide reconstructions with higher accuracy and precision than combined training sets, but their use is limited if they do not represent adequate modern analogues for fossil assemblages. Although analyses are time consuming, a regional training set of all three groups of micro‐organisms yields highly accurate (r2 = 0.80) and precise (low value of root mean square error) predictions of tidal level. This approach therefore could improve the accuracy and precision of Holocene sea‐level reconstructions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号