首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49389篇
  免费   1094篇
  国内免费   392篇
测绘学   1539篇
大气科学   3642篇
地球物理   11390篇
地质学   16343篇
海洋学   4016篇
天文学   11301篇
综合类   158篇
自然地理   2486篇
  2021年   476篇
  2020年   532篇
  2019年   566篇
  2018年   1311篇
  2017年   1216篇
  2016年   1642篇
  2015年   1011篇
  2014年   1485篇
  2013年   2530篇
  2012年   1646篇
  2011年   1982篇
  2010年   1842篇
  2009年   2376篇
  2008年   2082篇
  2007年   2014篇
  2006年   1903篇
  2005年   1453篇
  2004年   1469篇
  2003年   1358篇
  2002年   1356篇
  2001年   1222篇
  2000年   1124篇
  1999年   982篇
  1998年   1006篇
  1997年   982篇
  1996年   771篇
  1995年   753篇
  1994年   717篇
  1993年   614篇
  1992年   548篇
  1991年   551篇
  1990年   540篇
  1989年   541篇
  1988年   478篇
  1987年   553篇
  1986年   509篇
  1985年   586篇
  1984年   703篇
  1983年   624篇
  1982年   615篇
  1981年   554篇
  1980年   485篇
  1979年   479篇
  1978年   504篇
  1977年   417篇
  1976年   377篇
  1975年   389篇
  1974年   361篇
  1973年   417篇
  1972年   301篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
811.
Accuracy assessment of lidar-derived digital elevation models   总被引:2,自引:0,他引:2  
Despite the relatively high cost of airborne lidar-derived digital elevation models (DEMs), such products are usually presented without a satisfactory associated estimate of accuracy. For the most part, DEM accuracy estimates are typically provided by comparing lidar heights against a finite sample of check point coordinates from an independent source of higher accuracy, supposing a normal distribution of the derived height differences or errors. This paper proposes a new methodology to assess the vertical accuracy of lidar DEMs using confidence intervals constructed from a finite sample of errors computed at check points. A non-parametric approach has been tested where no particular error distribution is assumed, making the proposed methodology especially applicable to non-normal error distributions of the type usually found in DEMs derived from lidar. The performance of the proposed model was experimentally validated using Monte Carlo simulation on 18 vertical error data-sets. Fifteen of these data-sets were computed from original lidar data provided by the International Society for Photogrammetry and Remote Sensing Working Group III/3, using their respective filtered reference data as ground truth. The three remaining data-sets were provided by the Natural Environment Research Council's Airborne Research and Survey Facility lidar system, together with check points acquired using high precision kinematic GPS. The results proved promising, the proposed models reproducing the statistical behaviour of vertical errors of lidar using a favourable number of check points, even in the cases of data-sets with non-normally distributed residuals. This research can therefore be considered as a potentially important step towards improving the quality control of lidar-derived DEMs.  相似文献   
812.
Rational Function Model (RFM) is the alternate sensor Model to the rigorous sensor model that allows end user to perform sensor-independent photogrammetric processing. Nowadays, commercial off-the-shelf (COTS) digital photogrammetric work stations have incorporated RFM as a method for image restitution. It is technically applicable to all types of airborne and space borne sensors. In this paper, we describe the derivations of the algorithmic procedure for third order inverse and forward RFM method for 3-D reconstruction. Model accuracy is evaluated for aerial image, TK-350 Russian image and IRS-1C PAN image. The results ensure that properly constructed RFM are accurate enough to be used in place of the original rigorous models. The test results are reported and summarised.  相似文献   
813.
A World Bank-aided project on sodic land reclamation in Uttar Pradesh is being executed by U.P. Bhumi Sudhar Nigam, Lucknow, and Remote Sensing Applications Centre, U.P., Lucknow has the responsibility of sodic land mapping for the execution of land reclamation programme at the cadastral level. Sodic lands are mainly concentrated in the Gangetic alluvial plains but the problem of sodicity is particularly acute in the canal-irrigated areas. A study of the distribution pattern of sodic lands in canal and noncanal command areas in a reclamation site (covering 60 villages out of which sodic lands were mapped in 51 villages) of Etah district in Uttar Pradesh, indicates that 18.39 per cent area of the canal command villages was barren sodic which was 13.41 per cent of the total geographical area of the site (15417 ha), however, 11.69 per cent area was recorded to be barren sodic in the non-canal command villages which was only 3.16 per cent of the geographical area of the site. The results of soil chemical analysis indicate that barren sodic lands of canal command area are saline-sodic with higher concentration of soluble salts (pH2 >8.5, EC2 >4 dSm−1), however, those of non-canal command area are sodic (pH2 >8.5, EC2 <4 dSm−1). The post-monsoon ground level in the canal-irrigated areas was in the critical and semicritical zone (< 3.0 mbgl) whereas it was well below the semi-critical zone in the non-canal command area, which indicates that the high ground water level is a major factor to higher the area under sodicity.  相似文献   
814.
Digital elevation model (DEM) and the derived terrain parameters e.g. contour, slope, aspect, drainage pattern, etc are required for natural resources management, infrastructure planning and disaster management. The present paper aims at generating DEM from ERS tandem pair using interferometric technique supported by differential GPS measurements (DGPS) and multispectral optical data. Validation of DEM has been carried out by DGPS measurements. Ground Control Points (GCP) established by DGPS measurements have been used to georeference the IRS-1D optical data that has finally been co-registered with SAR amplitude image. Optical data, co-registered with ERS - I SAR data has helped in locating the GCP’s and check points, precisely, for refinement of DEM and its validation.  相似文献   
815.
816.
The ionospheric F2-layer peak density (NmF2) and its height (hmF2) are of great influence on the shape of the ionospheric electron density profile Ne (h) and may be indicative of other physical processes within the ionosphere, especially those due to geomagnetic storms. Such parameters are often estimated using models such as the semiempirical international reference ionosphere (IRI) models or are measured using moderately priced to expensive instrumentation, such as ionosondes or incoherent scatter radars. Global positioning system (GPS) observations have become a powerful tool for mapping high-resolution ionospheric structures, which can be used to study the ionospheric response to geomagnetic storms. In this paper, we describe how 3-D ionospheric electron density profiles were produced from data of the dense permanent Korean GPS network using the tomography reconstruction technique. These profiles are verified by independent ionosonde data. The responses of GPS-derived parameters at the ionospheric F2-layer to the 20th November 2003 geomagnetic storm over South Korea are investigated. A fairly large increase in the electron density at the F2-layer peak (the NmF2) (positive storm) has been observed during this storm, which is accompanied by a significant uplift in the height of the F2 layer peak (the hmF2). This is confirmed by independent ionosonde observations. We suggest that the F2-layer peak height uplift and NmF2 increase are mainly associated with a strong eastward electric field, and are not associated with the increase of the O/N2 ratio obtained from the GUVI instruments aboard the TIMED satellite. It is also inferred that the increase in NmF2 is not caused by the changes in neutral composition, but is related to other nonchemical effects, such as dynamical changes of vertical ion motions induced by winds and E × B drifts, tides and waves in the mesosphere/lower thermosphere region, which can be dynamically coupled upward to generate ionospheric perturbations and oscillations.  相似文献   
817.
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) . The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.  相似文献   
818.
Spin rate estimation of sounding rockets using GPS wind-up   总被引:2,自引:1,他引:1  
Carrier phase wind-up is a well-known effect that arises from the relative rotation between a transmitting and receiving antenna. In GPS measurements at L1 frequency, this effect translates into an error of 19.029 cm per full relative rotation of antennas. Since this effect is independent of the satellite elevation for pure rotation about the antenna boresight axis, it is usually absorbed by the clock estimation in navigation algorithms. Therefore, the impact of wind-up is usually neglected for applications that do not require accuracies to the cm level like RTK. However, in receiving platforms with high rotation rate, the accumulated wind-up value can be important and actually be larger than receiver noise or even ionospheric variations. Therefore, in such scenarios, the wind-up contribution can be isolated and used as a source of information to compute the spin rate of such platforms using an appropriate combination of GPS observables. This work shows some results of a coarse, yet simple, approach to monitor the rotation angle and spin-rate of spin stabilized sounding rockets flown by DLR.  相似文献   
819.
820.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号