首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1827篇
  免费   66篇
  国内免费   33篇
测绘学   30篇
大气科学   136篇
地球物理   450篇
地质学   584篇
海洋学   194篇
天文学   365篇
综合类   4篇
自然地理   163篇
  2021年   18篇
  2020年   23篇
  2019年   29篇
  2018年   29篇
  2017年   27篇
  2016年   44篇
  2015年   42篇
  2014年   35篇
  2013年   103篇
  2012年   58篇
  2011年   74篇
  2010年   70篇
  2009年   69篇
  2008年   98篇
  2007年   78篇
  2006年   81篇
  2005年   59篇
  2004年   54篇
  2003年   51篇
  2002年   58篇
  2001年   56篇
  2000年   56篇
  1999年   33篇
  1998年   42篇
  1997年   40篇
  1996年   29篇
  1995年   36篇
  1994年   31篇
  1993年   24篇
  1992年   20篇
  1991年   14篇
  1990年   25篇
  1989年   24篇
  1988年   22篇
  1987年   29篇
  1986年   22篇
  1985年   12篇
  1984年   30篇
  1983年   23篇
  1982年   18篇
  1981年   30篇
  1980年   17篇
  1979年   34篇
  1978年   27篇
  1977年   26篇
  1976年   13篇
  1975年   13篇
  1974年   10篇
  1973年   12篇
  1972年   10篇
排序方式: 共有1926条查询结果,搜索用时 296 毫秒
41.
42.
43.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   
44.
D T Tudor  A T Williams 《Area》2006,38(2):153-164
Questionnaires were completed by 2306 beach users at 19 Welsh beaches with respect to beach selection parameters. The modal group of respondents was female aged 30–39. Beach choice was primarily determined by clean litter-free sand and seawater, followed by safety. Refreshment facilities and beach awards were deemed minor considerations by the public when choosing a beach to visit. Approximately 58 per cent of respondents were aware of beach award and rating schemes. Of coastal visitors interviewed for this paper, 67 per cent rated a beach as 'important' or 'very important' to their holiday, with just 2 per cent replying that they were unimportant.  相似文献   
45.
46.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
47.
The Legs Lake shear zone marks the southeastern boundary of an extensive region (>20,000 km2) of high-pressure (0.8–1.5+ GPa) granulite-facies rocks in the western Churchill Province, Canada. The shear zone is one of the largest exhumation-related structures in the Canadian Shield and coincides with the central segment of the ∼2,800 km long Snowbird tectonic zone. The movement history of this shear zone is critical for the development of models for the exhumation history of the high-pressure region. We used electron microprobe U–Th–Pb dating of monazite with supplemental ID-TIMS U–Pb geochronology to place constraints on the timing of shear zone activity. Combining these and other data, we suggest that regional exhumation occurred during at least three distinct phases over an ∼150 million year period. The first phase involved high temperature decompression from ∼1.0 to 0.8–0.7 GPa shortly following 1.9 Ga peak metamorphism, possibly under an extensional regime. The second phase involved rock uplift and decompression of the hanging wall to 0.5–0.4 GPa during east-vergent thrusting across the Legs Lake shear zone at ca. 1.85 Ga. This phase was likely driven by early collision-related convergence in the Trans-Hudson orogen. The final phase of regional exhumation, involving the removal of 15–20 km of overburden from both footwall and hanging wall, likely occurred after ∼1.78 Ga and may have been related to regional extensional faulting.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
48.
New geochronological, isotopic and geochemical data for a spectacular swarm of deep crustal migmatitic mafic dikes offer important insight into processes operative during 1.9 Ga high pressure, high temperature metamorphism along the Snowbird tectonic zone in northern Saskatchewan. High-precision U–Pb zircon dates reveal anatexis of Chipman mafic dikes at 1,896.2 ± 0.3 Ma during syntectonic and synmetamorphic intrusion at conditions of 1.0–1.2 GPa, >750°C. U–Pb zircon dates of 1,894–1,891 Ma for cross-cutting pegmatites place a lower bound on major metamorphism and deformation at the currently exposed crustal levels. The persistence of elevated temperatures for ~14 m.y. following peak conditions is implied by younger U–Pb titanite dates, and by Sm–Nd whole rock isotopic data that suggest the derivation of the pegmatites by melting of a mafic source. Limited melting of the host felsic gneiss at 1.9 Ga despite high temperature is consistent with evidence for their previous dehydration by granulite facies metamorphism in the Archean. Spatial heterogeneity in patterns of mafic dike and tonalitic gneiss anatexis can be attributed to lateral peak temperature and compositional variability. We correlate 1,896 Ma Chipman mafic dike emplacement and metamorphism with substantial 1.9 Ga mafic magmatism over a minimum along-strike extent of 1,200 km of the Snowbird tectonic zone. This suggests a significant, continent-wide period of asthenospheric upwelling that induced incipient continental rifting. Extension was subsequently terminated by hinterland contraction associated with Trans-Hudson accretion and orogenesis. Little activity in the lower crust for ca. 650 m.y. prior to Proterozoic metamorphism and mafic magmatism implies an extended interval of cratonic stability that was disrupted at 1.9 Ga. This episode of destabilization contrasts with the record of long-term stability in most preserved cratons, and is important for understanding the lithospheric characteristics and tectonic circumstances that control the destruction or survival of continents.  相似文献   
49.
In this letter we develop a new concept, the negative alpha filter, which we suggest has application for quantitative estimation of surface parameters beneath vegetation using polarimetric synthetic aperture radar (SAR) interferometry (POLInSAR). We first derive the filter and then validate it using simulations of L-band coherent forest scattering. We then show initial results of applying the filter to airborne data from the German Aerospace Center's E-SAR L-band sensor.  相似文献   
50.
Recent studies in northern Switzerland have shown that epicontinental areas thought to have been tectonically stable during the Mesozoic were not necessarily as rigid as presumed. By comparing Oxfordian facies boundaries and depocenters in their palinspastic position with known faults in the basement, a direct relationship between the two can be demonstrated. Previously, the lack of obvious synsedimentary tectonic features has lulled scientists into believing that the realm of the Swiss Jura was tectonically stable during the Mesozoic. However, it can be shown that facies and sedimentary structures are largely influenced by tectonics. Subsurface data provide evidence for the presence of Paleozoic troughs in the basement which, apparently, were prone to reactivation during the Pan-European stress-field reorganization taking place in the Late Jurassic. This led to differential subsidence along pre-existing lineaments within the study area, which can be recognized in the distribution of Oxfordian epicontinental basins and their coeval shallow-water counterparts. Eustatic sea-level fluctuations played an important role in the development of shallow-water facies patterns, but a subordinate role in the control of accommodation space in basins.

While tectonic activity is often recorded in the sedimentary record in the form of platform break-ups and associated sedimentary debris, more subtle indicators may be overlooked or even misinterpreted. Sedimentary structures and isopach maps, as well as subsurface data in the study area suggest that subtle synsedimentary tectonic movements led to the formation of two shallow, diachronous epicontinental basins during the Late Jurassic. It becomes possible to recognize and differentiate the combined effects of local and regional tectonism, eustasy and sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号