首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30396篇
  免费   630篇
  国内免费   314篇
测绘学   734篇
大气科学   2393篇
地球物理   6596篇
地质学   10571篇
海洋学   2546篇
天文学   6197篇
综合类   51篇
自然地理   2252篇
  2020年   194篇
  2019年   191篇
  2018年   385篇
  2017年   373篇
  2016年   530篇
  2015年   394篇
  2014年   538篇
  2013年   1462篇
  2012年   660篇
  2011年   1008篇
  2010年   848篇
  2009年   1115篇
  2008年   1051篇
  2007年   980篇
  2006年   1025篇
  2005年   874篇
  2004年   912篇
  2003年   853篇
  2002年   850篇
  2001年   690篇
  2000年   693篇
  1999年   665篇
  1998年   629篇
  1997年   636篇
  1996年   539篇
  1995年   532篇
  1994年   506篇
  1993年   472篇
  1992年   451篇
  1991年   387篇
  1990年   468篇
  1989年   375篇
  1988年   413篇
  1987年   463篇
  1986年   391篇
  1985年   565篇
  1984年   643篇
  1983年   627篇
  1982年   508篇
  1981年   504篇
  1980年   512篇
  1979年   468篇
  1978年   456篇
  1977年   427篇
  1976年   444篇
  1975年   395篇
  1974年   429篇
  1973年   421篇
  1972年   262篇
  1971年   207篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
771.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   
772.
A.S. Gaab  M. Jank  U. Poller  W. Todt 《Lithos》2006,87(3-4):261-275
Magmatic protoliths of Ordovician age have been identified in the metamorphic rocks of the Muráñ Gneiss Complex, Veporic Unit (Central Western Carpathians). Vapor digestion single zircon U–Pb dating yields an intrusion age of 464 ± 35 Ma (upper intercept) for the granite protolith. A lower intercept age of 88 ± 40 Ma records amphibolite-facies metamorphic overprint in the Cretaceous, during the Alpine orogeny. Geochemical and isotopic data suggest crustal origin of the orthogneiss. Ndinitial are between − 2.6 and − 5.0 and TDMNd between 1.3 and 1.5 Ga (two-step approach). 87Sr / 86Srinitial ratios vary between 0.7247 and 0.7120, and a steep REE pattern further constrains the crustal affinity of these rocks. Associated amphibolite bodies have Ndinitial values of 6.5, 87Sr / 86Srinitial ratio of 0.7017, and a flat REE pattern. They are interpreted as MORB derived metabasites. Whole-rock Pb isotope analyses define a linear array in a 206Pb / 204Pb vs. 207Pb / 204Pb diagram with an age of ca. 134 Ma, consistent with intense Alpine metamorphism and deformation.

These basement rocks of the Central Western Carpathians are interpreted as Ordovician magmatic rocks intruded at an active margin of Gondwana. They represent the eastern prolongation of Cambro–Ordovician units of the European Variscides, which were part of the peri-Gondwana superterrane and accreted to Laurussia during the Variscan orogeny. Variscan metamorphic overprint is not recorded by the isotopic data of the Muráñ Gneiss Complex. Alpine metamorphism is the most dominant overprint.  相似文献   

773.
Fractional crystallization of peraluminous F- and H2O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions.

We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.  相似文献   

774.
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450–550 °C at 2.8–4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. δ13C values for methane range from − 22.4‰ to − 5.4‰, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in δ13C isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks.  相似文献   
775.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   

776.
The Midsommersø dolerites and the flood basalts of the Zig-Zag Dal Basalt Formation, eastern North Greenland, represent a major Mesoproterozoic (∼1,380 Ma) igneous event. The intrusive rocks form large sheets within a succession of feldspathic sandstones which underlie the basalts. The geochemistry of the basalts has recently been re-investigated and reported elsewhere in this Journal; here we present new trace element and Nd-, Sr- and Pb-isotopic data for the intrusive rocks. Unlike the basalts, the intrusions yield evidence of considerable interaction and contamination with upper crustal rocks, especially the sandstones. High-silica rocks (80–90 wt% SiO2) occur in sheets, up to 60 m thick. They were formed by mobilisation of sandstones, and indicate a very high rate of emplacement of hot basic magma into the sandstones at depth. These mobilised sandstones (‘rheopsammites’) are among the most SiO2-rich intrusive rocks on earth. Sheets of remobilised granitoid rocks from the crystalline basement (∼70% SiO2) are also present. Hydrothermal activity, associated with the igneous event, significantly changed the compositions of the silicic rocks as well as that of many dolerites. Sheets of hydrothermally altered (‘red’) dolerites and silicic rocks invariably have borders of dark, fresh dolerite; this is interpreted to be the result of intrusion from zoned magma chambers. Nd isotope data confirm the crustal origin of the silicic rocks as well as the contamination of some dolerites by components derived from crustal sources, while Sr- and Pb-isotopic systems are strongly affected by the hydrothermal alteration, and give little information on the petrogenesis of the rocks. Recent loss of Sr from hydrothermally altered rocks further affected the Sr isotope systems, and earlier age determinations by the Rb–Sr whole-rock isochron method (1,230 Ma) have proved to be in error. The dolerites and the basalts are geochemically very similar, but most dolerites have moderately negative Eu anomalies that are not observed in the basalts. Eu anomalies in the dolerites could be related to contamination by sandstone at depth, but it is not clear why the basalts escaped a similar contamination.  相似文献   
777.
Partitioning of heavy metals (Cd, Cr, Cu, Pb, Zn) in marine sediments collected from various sites in Hong Kong waters were determined using sequential extraction method. Sediments from Kellette Bank, located in Victoria Harbour, had higher metal concentrations especially Cu and Zn than most other sites. Slightly over 20% of total Cu and Cr existed as readily available forms in Peng Chau and Kellette Bank. At most sampling sites, over 15% of the Cu existed as the exchangeable form indicating that Cu could be readily released into the aqueous phase from sediments. A significantly higher percentage of Pb and Zn was associated with the three non-residual fractions. Hence, there is a greater environmental concern for remobilization of Pb and Zn compared with Cr. The high amount of residual Cd (>50%) and the relatively lower Cd content indicate that little environmental concern is warranted for the remobilization of Cd. Distribution of metals in sediments collected from different depth at Kellette Bank shows that metal concentrations decreased with profile depth. The levels of Pb and Zn associated with the two readily available fractions increased sharply in the surface sediment. These metals represented the pollutants, which were introduced into the area in the mid-eighties through early nineties as a result of rapid economic and industrial development in the territory. As significant portions of these metals were bound to the readily available phases in the surface sediments, metal remobilization could be a concern. An erratum to this article can be found at  相似文献   
778.
779.
Hydrologic time series of groundwater levels, streamflow, precipitation, and tree-ring indices from four alluvial basins in the southwestern United States were spectrally analyzed, and then frequency components were reconstructed to isolate variability due to climatic variations on four time scales. Reconstructed components (RCs), from each time series, were compared to climatic indices like the Pacific Decadal Oscillation (PDO), North American Monsoon (NAM), and El Niño-Southern Oscillation (ENSO), to reveal that as much as 80% of RC variation can be correlated with climate variations on corresponding time scales. In most cases, the hydrologic RCs lag behind the climate indices by 1–36 months. In all four basins, PDO-like components were the largest contributors to cyclic hydrologic variability. Generally, California time series have more variation associated with PDO and ENSO than the Arizona series, and Arizona basins have more variation associated with NAM. ENSO cycles were present in all four basins but were the largest relative contributors in southeastern Arizona. Groundwater levels show a wide range of climate responses that can be correlated from well to well in the various basins, with climate responses found in unconfined and confined aquifers from pumping centers to mountain fronts.  相似文献   
780.
In ground improvement projects with prefabricated vertical drains, the duration of the preloading period is set in advance based on the predetermined time rate of consolidation of the compressible layer. If prediction is accurately done, the required degree of consolidation is met at the pre-determined preloading time. As such, there is a requirement for in-situ tests to be carried out just prior to the removal of surcharge to assess the degree of consolidation of the improved ground. In-situ tests were carried out after 23 months of surcharge loading at the In-Situ Test Site within the Changi East Reclamation Project in the Republic of Singapore. In-situ testing works in this research study comprises the use of field vane shear, piezocone, flat dilatometer and self-boring pressuremeter. The in-situ tests were carried out to determine the shear strength and degree of consolidation of the Singapore marine clay at Changi after 23 months of surcharge loading. The In-Situ Test Site consisted of a Vertical Drain Area as well as an untreated Control Area. Both areas were located adjacent to each other and were surcharged simultaneously to the same level and surcharge left in place for a period of 23 months. Comparison was made between the in-situ test results of the Vertical Drain Area and the untreated Control Area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号