There is growing interest in rates of nitrate uptake and denitrification in restored streams to better understand the effects
of restoration on nitrogen processing. This study quantified nitrate uptake in two restored and two unrestored streams in
Baltimore, Maryland, USA using nitrate additions, denitrification enzyme assays, and a 15N isotope tracer addition in one of the urban restored streams, Minebank Run. Restoration included either incorporation of
stormwater ponds below a storm drain and catch basins to attenuate flow or hydrologic “reconnection” of a stream channel to
its floodplain. Stream restoration was conducted for restoring aging sanitary and bridge infrastructure and introducing some
stormwater management in watersheds developed prior to current regulations. Denitrification potential in sediments was variable
across streams, whereas nitrate uptake length appeared to be significantly correlated to surface water velocity, which was
low in the restored streams during summer baseflow conditions. Uptake length of NO3−–N in Minebank Run estimated by 15N tracer addition was 556 m. Whole stream denitrification rates in Minebank Run were 153 mg NO3−–N m−2 day−1, and approximately 40% of the daily load of nitrate was estimated to be removed via denitrification over a distance of 220.5 m
in a stream reach designed to be hydrologically “connected” to its floodplain. Increased hydrologic residence time in Minebank
Run during baseflow likely influenced rates of whole stream denitrification, suggesting that hydrologic residence time may
be a key factor influencing N uptake and denitrification. Restoration approaches that increase hydrologic “connectivity” with
hyporheic sediments and increase hydrologic residence time may be useful for stimulating denitrification. More work is necessary,
however, to examine changes in denitrification rates in restored streams across different seasons, variable N loads, and in
response to the “flashy” hydrologic flow conditions during storms common in urban streams. 相似文献
A combination of empirical and physically based hydrological models has been used to analyze historical data on rainfall and debris-flow occurrence in western Campania, to examine the correlation between rainfall and debris-flow events.
Rainfall data from major storms recorded in recent decades in western Campania were compiled, including daily series from several rain gauges located inside landslide areas, supplemented by hourly rainfall data from some of the principal storms.
A two-phase approach is proposed. During phase 1, soil moisture levels have been modelled as the hydrological balance between precipitation and evapotranspiration, on a daily scale, using the method of Thornthwaite [Geograph. Rev. 38 (1948) 55].
Phase 2 is related to the accumulation of surplus moisture from intense rainfall, leading to the development of positive pore pressures. These interactions take place on an hourly time scale by the “leaky barrel” (LB) model described by Wilson and Wiezoreck [Env. Eng. Geoscience, 1 (1995) 11]. In combination with hourly rainfall records, the LB model has been used to compare hydrological effects of different storms. The critical level of retained rain water has been fixed by the timing of debris-flow activity, related to recorded storm events.
New rainfall intensity–duration thresholds for debris-flow initiation in western Campania are proposed. These thresholds are related to individual rain gauge and assume a previously satisfied field capacity condition. The new thresholds are somewhat higher than those plotted by previous authors, but are thought to be more accurate and thus need less conservatism. 相似文献
The ZoNéCo 1 and 2 cruises of Ifremer's Research Vessel L'Atalante, collected new swath bathymetry and geophysical data over the southern and northern segments of the basins and ridges forming the Loyalty system. Between the two surveyed areas, previous studies found evidence for the resistance of the Loyalty Ridge to subduction beneath the New Hebrides trench near 22°S–169°E. On the subducted plate, except for seismicity related to the downbending of the Australian plate, recorded shallow seismicity is sparse within the Loyalty system (Ridge and Basin) where reliable focal mechanism solutions are almost absent.Swath bathymetry, seismic reflection and magnetic data acquired during the ZoNéCo 1 and 2 cruises revealed a transverse asymmetric morphology in the Loyalty system, and an along-strike horst and graben structure on the discontinuous Loyalty Ridge. South of 23°50S and at 20°S, the two WSW-ENE-trending fault systems, respectively, sinistral and dextral, that crosscut the southern and northern segments of the Loyalty system, are interpreted as due to the early effects of collision with the New Hebrides Arc. A NNW-SSE trend, evident along the whole Loyalty system and on the island of New Caledonia, is interpreted as an inherited structural trend that may have been reactivated through flexure of the Australian lithospheric plate at the subduction zone.Overall then, the morphology, structure and evolution of the southern and northern segments of the Loyalty system probably result from the combined effects of the Australian plate lithospheric bulge, the active Loyalty-New Hebrides collision and the overthrust of the New Caledonian ophiolite. 相似文献
Résumé La formule de base, traduisant une propriété analytique d'une classe très générale de fonctions, est un corollaire du théorème fondamental démontré dans un mémoire précédent, d'après lequel, étant donnés une fonction continue,p(, ,t) des points (, ) d'une surface régulière fermée et du temps et le champ
d'un vecteur vitesse de transfert ou d'advection tangent à et ayant des lignes de flux fermées et régulières, il existe un opérateur spatial, linéaire, non singulierA tel que la fonctionA(p+Const.) soit purement advective par rapport a
(sans creusement ni comblement). Ce théorème peut être exprimé par l'équation
, où
est un opérateur spatial, linéaire et non singulier, fonction deA.La détermination de
peut être faite, soit en comparant deux formes différentes de la solution générale de l'équation en
, soit en utilisant un raisonnement a priori très simple. On arrive ainsi au résultat
pour un certain scalaireu(, ).Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde l'équation
résulte aussi, comme nous l'avons montré dans le mémoire précédent, de notre théorie hydrodynamique des perturbations. On montre ici que la même équation peut encore être déduite de l'équation de continuité associée à la condition d'équilibre quasi statique selon la verticale.Comme applications de la formule de base (solution générale de l'équation enM), on étudie les problèmes suivants: 1o creusement et comblement en général; 2o creusement et comblement des centres et des cols; 3o mouvement des centres et des cols; 4o instabilité d'un champ moyen; 5o propriétés spatiales des champsp(, ,t) et des vecteurs d'advection
analytiques.Après une discussion des erreurs de la prévision d'un champp(, ,t) par la formule de base, du fait des erreurs des observations et du fonctionnement du calculateur, on examine quelques particularités du transfert ou advection d'un champf0(, ) par le vecteur
. Enfin, le dernier chapitre du mémoire donne des éclaircissements complémentaires sur la structure du calculateur électronique «Temp» (qui effectue automatiquement les opérations mathématiques de la formule de base) et expose l'état actuel de sa construction.
Summary The basic formula, expressing an analytical property of a very general class of functions, is a corollary of the fundamental theorem, proved in a previous paper, according to which, given a functionp(, ,t) of the points (, ) of a closed regular surface and of the time, and a transfer or advection velocity vector
tangent to and having regular closed streamlines, there is a spatial, linear, non singular operatorA such thatA(p+const.) is a purely advective function in respect to
(no deepening). This theorem can be expressed by the equation
where
is a spatial, linear, non singular operator depending onA.The determination of
can be attained, either by the comparison of two different forms of the general solution of the
-equation, or by a simple a priori reasonning. The conclusion is thus reached that
for a certain scalaru(, ).Whenp(, ,t) is the pressure perturbation at sea level, it was shown, in the preceding paper, that the equation
can also be derived from our hydrodynamical perturbation theory. We now show that for this particular case, the same equation is also a consequence of the equation of continuity together with the condition of quasi statical vertical equilibrium.The following problems are then analysed by means of the basic formula: 1o deepening and filling in general; 2o deepening and filling of the centres and cols; 3o motion of the centres and cols; 4o instability of a mean field; 5o spatial properties of the analytical fields and advection vectors
.The errors in the forecast of a field,p(, ,t) by means of the basic formula, due to the observational and computational errors, are discussed, and some peculiarities of the transfer or advection of a fieldf0(, ) by
are examined. Finally, complementary points are disclosed on the structure of the electronic computer «Temp» which performs automatically the mathematical operations of the basic formula, and a brief report is given of the present state of its construction.
A study of the asteroid 433 Eros using 3.5 and 12.6 cm radar waves indicates that the surface is very much rougher than any planetary or lunar surface observed by this method. A surface completely covered with sharp edges, pits, subsurface holes, or embedded chunks with scale sizes on the order of our wavelengths seems to be indicated. A model based on a rough rotating triaxial ellipsoid having radii in the rotation equator of 18.6 and 7.9 km agrees well with our data, although a strong wobble in the apparent center frequency of the spectra as rotation progresses indicates that one side may be more reflective than the other, or more likely, that the projected axis of rotation does not equally divide the projected area. 相似文献
Defining temperature at depth to identify geothermal resources relies on the evaluation of the Earth heat flow based on equilibrium temperature measurements as well as thermal conductivity and heat generation rate assessment. Such high-quality geothermal data can be sparse over the region of interest. This is the case of the St. Lawrence Lowlands sedimentary basin covering 20,000 km2 to the south of Québec, Canada, and enclosing only three wells up to a depth of 500 m with equilibrium heat flow measurements. However, more than 250 oil and gas exploration wells have been drilled in this area, providing for this study (parce que c'est 93 sinon) 81 locations with bottom-hole temperature up to a depth of 4300 m, however, not at equilibrium. Analyzing these data with respect to the deep geothermal resource potential of this sedimentary basin requires evaluating the thermal conductivity and heat generation rate of its geological units to properly extrapolate temperature downward. This was done by compiling literature and recent thermal conductivity measurements in outcrop and core samples as well as new heat generation rate estimates from spectral gamma ray logs to establish a first thermal assessment of geological units deep down into the basin. The mean thermal conductivity of the thermal units varies from 2.5 to 6.3 W/m·K, with peak values in the basal sandstones, while the heat generation rate varies from 1.6 to 0.3 µW/m3, decreasing from the upper caprocks toward the base of the sequence. After correcting the bottom-hole temperatures for drilling disturbance with the Harrison correction and subsequently for paleoclimate variations, results indicate a mean geothermal gradient of 23.1 °C/km, varying from 14 to 40 °C/km. Evaluating the basin thermal state from oil and gas data is a significant challenge facilitated by an understanding of its thermal properties. 相似文献
This article presents an innovative approach to citizen-led production of Web-based geographic information where new and/or existing digital map features are linked to annotations or commentary and citizens engage in synchronous and/or asynchronous discussion. The article discusses the relationship of the approach to public participation geographic information systems (PPGISs) and the emerging challenges associated with volunteered geographic information. A custom-developed, open source software tool named MapChat is used to facilitate the citizen inputs and discussions. The information generated from applying the approach through a series of community workshops is presented and discussed in light of current issues in PPGIS and volunteered geographic information research. 相似文献
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity–duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings.Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10 min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3 h, with most of the rain falling in less than 1 h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D−0.7 and I = 9.5D−0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours).Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16 h, of low-intensity (2–10 mm/h) rainfall. The storms lasted between 5.5 and 33 h, with average intensities between 1.3 and 20.4 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D−0.4, and I = 7.2D−0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D−0.5 is approximately 25 mm/h higher than that developed for the first year following fires.The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes. 相似文献
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies. 相似文献