首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   17篇
  国内免费   7篇
测绘学   7篇
大气科学   43篇
地球物理   89篇
地质学   176篇
海洋学   22篇
天文学   97篇
自然地理   38篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   16篇
  2017年   12篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   35篇
  2012年   13篇
  2011年   21篇
  2010年   11篇
  2009年   19篇
  2008年   20篇
  2007年   13篇
  2006年   12篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   11篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   10篇
  1995年   5篇
  1994年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1987年   10篇
  1986年   9篇
  1985年   6篇
  1984年   10篇
  1983年   7篇
  1982年   8篇
  1981年   9篇
  1980年   9篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1971年   6篇
  1969年   2篇
排序方式: 共有472条查询结果,搜索用时 328 毫秒
21.
22.

Critique and Bibliography

Review of selected works by Hans Ertel: Vol. 5, Geophysical Fluid Dynamics (2005), and Vol. 6, Oceanography and Hydrography (2006)  相似文献   
23.
This study surveys the available English-language literature and learning resources covering the field of Thai geography, and provides historical review of Thai geography education and an inventory of relevant, accessible materials for ASEAN and international undergraduate students, educators and researchers. We note that the discipline and context of Thai geography has shifted toward new technologies, particularly geographic information systems, and this has left a void in practical and accessible text for high school and undergraduate students in gaining broad and traditional knowledge of the field. Our study finds that the accessibility of introductory English-language texts on Thai geography is limited, and that existing texts appear mainly in the grey literature or widely dispersed across various disciplines of study. The paper provides a platform to help future researchers and to facilitate future production of English-language textbooks and other study materials in the field of Thai geography.  相似文献   
24.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
25.
The Visible and Infrared Spectrometer (VIR) instrument on the Dawn mission observed Ceres’s surface at different spatial resolutions, revealing a nearly uniform global distribution of surface mineralogy. Clearly, Ceres experienced extensive water‐related processes and chemical differentiation. The surface is mainly composed of a dark component (carbon, magnetite?), Mg‐phyllosilicates, ammoniated clays, carbonates, and salts. The observed species suggest endogenous, global‐scale aqueous alteration. While mostly uniform at regional scale, Ceres’s surface shows small localized areas with different species and/or variations in abundances. Few local exposures of water ice are seen, especially at higher latitudes. Sodium carbonates have been identified in several areas on the surface, notably in Occator bright faculae. Organic matter has also been discovered in several places, most conspicuously in a large area close to the Ernutet crater. The observed mineralogies, with the presence of ammoniated species and sodium salts, have a strong resemblance to materials found on other bodies of the outer solar system, such as Enceladus. This poses some questions about the original material from which Ceres accreted, suggesting a colder environment for such material with respect to Ceres’s present position.  相似文献   
26.
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the youngest craters on Ceres, exhibits a peculiar “blue” visible to near‐infrared spectral slope, and has distinct color properties as seen in multispectral composite images. In this paper, we investigate a number of spectral indices: reflectance; spectral slopes; abundance of Mg‐bearing and NH4‐bearing phyllosilicates; nature and abundance of carbonates, which are diagnostic of the overall crater mineralogy; plus a temperature map that highlights the major thermal anomaly found on Ceres. In addition, for the first time we quantify the abundances of several spectral endmembers by using VIR data obtained at the highest pixel resolution (~0.1 km). The overall picture we get from all these evidences, in particular the abundance of Na‐ and hydrous Na‐carbonates at specific locations, confirms the young age of Haulani from a mineralogical viewpoint, and suggests that the dehydration of Na‐carbonates in the anhydrous form Na2CO3 may be still ongoing.  相似文献   
27.
To determine the genetic structure of the bay anchovy (Anchoa mitchilli) within Chesapeake Bay, 16 isozyme systems encoding 21 loci for 20 population were examined using horizontal starch gel electrophoresis. Contingency Chisquare analysis revealed significant allelic frequency differences at nine loci (AAT-1, AAT-2, ALD-1, CPK-2, GAP-1, GLY-1, LDH-1, MDH-1, and MDH-2). Two loci, ALD-1 and MDH-1, were responsible for nine of 14 tests not conforming to Hardy-Weinberg expectations, with some of these deviations attributed to possible scoring and/or sampling error. Estimates for mean average heterozygosity were relatively high, ranging from 0.40 to 0.096, with 33–57% of the loci polymorphic. A low Fst value (0.041) along with high genetic identity estimates (I=0.997) indicated little substructuring of bay anchovy populations within Chesapeake Bay.  相似文献   
28.
Statistical ice cover models were used to project daily mean basin ice cover and annual ice cover duration for Lakes Superior and Erie. Models were applied to a 1951–80 base period and to three 30-year steady double carbon dioxide (2 × CO2) scenarios produced by the Geophysical Fluid Dynamics Laboratory (GFDL), the Goddard Institute of Space Studies (GISS), and the Oregon State University (OSU) general circulation models. Ice cover estimates were made for the West, Central, and East Basins of Lake Erie and for the West, East, and Whitefish Bay Basins of Lake Superior. Average ice cover duration for the 1951– 80 base period ranged from 13 to 16 weeks for individual lake basins. Reductions in average ice cover duration under the three 2 × CO2 scenarios for individual lake basins ranged from 5 to 12 weeks for the OSU scenario, 8 to 13 weeks for the GISS scenario, and 11 to 13 weeks for GFDL scenario. Winters without ice formation become common for Lake Superior under the GFDL scenario and under all three 2 × CO2 scenarios for the Central and East Basins of Lake Erie. During an average 2 × CO2 winter, ice cover would be limited to the shallow areas of Lakes Erie and Superior. Because of uncertainties in the ice cover models, the results given here represent only a first approximation and are likely to represent an upper limit of the extent and duration of ice cover under the climate change projected by the three 2 × CO2scenarios. Notwithstanding these limitations, ice cover projected by the 2 × CO2 scenarios provides a preliminary assessment of the potential sensitivity of the Great Lakes ice cover to global warming. Potential environmental and socioeconomic impacts of a 2 × CO2 warming include year-round navigation, change in abundance of some fish species in the Great Lakes, discontinuation or reduction of winter recreational activities, and an increase in winter lake evaporation.  相似文献   
29.
Phytoplankton is considered a key component mediating the ocean-atmospheric exchange of carbon dioxide and oxygen. Lab simulations which model biological responses to atmospheric change are difficult to translate into natural settings owing in part to the vertical migration of phytoplankton. In the sea this vertical migration acts to regulate actual carbon dioxide consumption. To capture some critical properties of this vertical material transfer, we monitored the effects of atmospheric CO2 on dense suspensions of bioconvecting microorganisms. Bioconvection refers to the spontaneous patterns of circulation which arise among such upwardly swimming cells as alga, protozoa, zoospore and large bacteria. Gravity, phototaxis and chemotaxis have all been implicated as affecting pattern-forming ability. The ability of a biologically active suspension to detect atmospheric changes offers a unique method to quantify organism adjustment and vertical migration. With increasing CO2, bioconvection patterns in alga (P. parva) and protozoa (T. pyriformis) lose their robustness, and surface cell populations retreat from the highest CO2 regions. Cell movement (both percent motile and mean velocity) generally diminishes. A general program of image analysis yields statistically significant variations in macroscopic migration patterns; both fractal dimension and various crystallographic parameters correlate strongly with carbon dioxide content.  相似文献   
30.
Variations in the distribution of mass within the atmosphere, and changes in the pattern of winds produce fluctuations in all three components of the angular momentum of the atmosphere on time-scales upwards of a few days. It, has been shown that variations in theaxial component of atmospheric angular momentum during the Special Observing Periods in the recent First GARP Global Experiment (FGGE, where GARP is the Global Atmospheric Research Programme) are well correlated with short-term changes in the length of the day. They are consistent with the total angular momentum of the atmosphere and solid Earth being conserved on short timescales (allowing for lunar and solar effects), without requiring significant angular momentum transfer between the Earth's liquid core and solid mantle on timescales of weeks or months. It has also been shown that fluctuations, in the equatorial components of atmospheric angular momentum make a major contribution to the observed wobble of the instantaneous pole of the Earth's rotation with respect to the Earth's crust. A necessary step in the investigation was a re-examination of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. New effective angular momentum functions were introduced in order to exploit the available data and allow for rotational and surface loading deformation of the Earth. A theoretical basis has now been established for future routine determinations of atmopheric, angular momentum fluctuations for the purpose of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号