首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   19篇
  国内免费   4篇
测绘学   11篇
大气科学   9篇
地球物理   112篇
地质学   101篇
海洋学   26篇
天文学   63篇
综合类   1篇
自然地理   16篇
  2023年   6篇
  2022年   4篇
  2021年   9篇
  2020年   13篇
  2019年   13篇
  2018年   10篇
  2017年   12篇
  2016年   26篇
  2015年   13篇
  2014年   12篇
  2013年   12篇
  2012年   18篇
  2011年   15篇
  2010年   17篇
  2009年   15篇
  2008年   18篇
  2007年   19篇
  2006年   11篇
  2005年   6篇
  2004年   16篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1979年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有339条查询结果,搜索用时 62 毫秒
251.
Natural Hazards - Understanding the occurrence of natural disasters in regions where the occurrence is high is very important, and it is known that the occurrence of disasters associated with...  相似文献   
252.
We present an RI photometric survey covering an area of 430 arcmin2 around the multiple star σ Orionis. The observations were conducted with the 0.8 m IAC‐80 Telescope at the Teide Observatory. The survey limiting R and I magnitudes are 22.5 and 21, and completeness magnitudes 21 and 20, respectively. We have selected 53 candidates from the I vs. RI colour‐magnitude diagram (I = 14–20) that follow the previously known photometric sequence of the cluster. Adopting an age of 2–4 Myr for the cluster, we find that these objects span a mass range from 0.35 M to 0.015 M. We have performed J‐band photometry of 52 candidates and Ks photometry for 12 of them, with the result that 50 follow the expected infrared sequence for the cluster, thus confirming with great confidence that the majority of the candidates are bona fide members. JHKs photometry from the Two Micron All Sky Survey (2MASS) is available for 50 of the candidates and are in good agreement with our data. Out of 48 candidates, which have photometric accuracies better than 0.1 mag in all bands, only three appear to show near‐infrared excesses. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
253.
We present a critical analysis of experimental findings on vegetation–flow–sediment interactions obtained through both laboratory and field experiments on tidal and coastal environments. It is well established that aquatic vegetation provides a wide range of ecosystem services (e.g. protecting coastal communities from extreme events, reducing riverbank and coastal erosion, housing diverse ecosystems), and the effort to better understand such services has led to multiple approaches to reproduce the relevant physical processes through detailed laboratory experiments. State-of-the-art measurement techniques allow researchers to measure velocity fields and sediment transport with high spatial and temporal resolution under well-controlled flow conditions, yielding predictions for hydrodynamic and sediment transport scenarios that depend on simplified or bulk vegetation parameters. However, recent field studies have shown that some simplifications on the experimental setup (e.g. the use of rigid elements, a single diameter, a single element height, regular or staggered layout) can bias the outcome of the study, by either hiding or amplifying some of the relevant physical processes found in natural conditions. We discuss some observed cases of bias, including general practices that can lead to compromises associated with simplified assumptions. The analysis presented will identify potential pathways to move forward with laboratory and field measurements, which could better inform predictors to produce more robust, universal and accurate predictions on flow–vegetation–sediment interactions. © 2020 John Wiley & Sons, Ltd.  相似文献   
254.
Rills are generated on homogeneous hillslopes by the action of different discharges and evolve morphologically over short timescales due to a strong interaction between the flow and bed morphology. Such an interaction generates a reconfiguration of the bed geometry. Previous works suggest that bed geometry is often characterized by alternation between pools and flat reaches (steps). Each step–pool unit may contribute to hydraulic resistance and affects flow behaviour. The objectives of this work are (i) to assess different (innovative) techniques for the in-situ assessment of rill bed geometry, (ii) to use these techniques to assess the geometry of eroded rills in situ in order to determine the spatial arrangement in the bed macro-scale roughness and (iii) finally to analyse the role of slope and discharge as driving factors associated with the development of these macroforms. Roughly rectilinear, long rills were formed in the field as a result of combining different slope and discharges. Photogrammetry provided detailed digital elevation models (DEMs) before and after the experiments. The rills were morphologically characterized from the DEMs. In each rill, the presence of step–pools was identified from long profiles according mainly to morphological criteria published elsewhere, but with ad hoc critical threshold values more appropriate for small eroded channels. The minimum slope required for the development of step–pool units seems to be somewhere between 5 and 15%. Discharge seems to affect pool size or roughness amplitude. There does not seem to be a clear step–pool periodicity. However, external factors could have affected the normal growth and alternation of these structures. Identification of steps and pools from longitudinal elevation profiles can be objectively accomplished using a series of geometric rules originally proposed for rivers and large channels, and adapted to rills. © 2019 John Wiley & Sons, Ltd.  相似文献   
255.
The surface roughness of agricultural soils is mainly related to the type of tillage performed, typically consisting of oriented and random components. Traditionally, soil surface roughness (SSR) characterization has been difficult due to its high spatial variability and the sensitivity of roughness parameters to the characteristics of the instruments, including its measurement scale. Recent advances in surveying have greatly improved the spatial resolution, extent, and availability of surface elevation datasets. However, it is still unknown how new roughness measurements relates with the conventional roughness measurements such as 2D profiles acquired by laser profilometers. The objective of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) photogrammetry techniques for quantifying SSR over different agricultural soils. With this aim, an experiment was carried out in three plots (5 × 5 m) representing different roughness conditions, where TLS and SfM photogrammetry measurements were co-registered with 2D profiles obtained using a laser profilometer. Differences between new and conventional roughness measurement techniques were evaluated visually and quantitatively using regression analysis and comparing the values of six different roughness parameters. TLS and SfM photogrammetry measurements were further compared by evaluating multi-directional roughness parameters and analyzing corresponding Digital Elevation Models. The results obtained demonstrate the ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over agricultural soils. However, profiles obtained with both techniques (especially SfM photogrammetry) showed a loss of high-frequency elevation information that affected the values of some parameters (e.g. initial slope of the autocorrelation function, peak frequency and tortuosity). Nevertheless, both TLS and SfM photogrammetry provide a massive amount of 3D information that enables a detailed analysis of surface roughness, which is relevant for multiple applications, such as those focused in hydrological and soil erosion processes and microwave scattering. © 2019 John Wiley & Sons, Ltd.  相似文献   
256.
What dominates sea level at the coast: a case study for the Gulf of Guinea   总被引:1,自引:0,他引:1  
Sea level variations and extreme events are a major threat for coastal zones. This threat is expected to worsen with time because low-lying coastal areas are expected to become more vulnerable to flooding and land loss as sea level rises in response to climate change. Sea level variations in the coastal ocean result from a combination of different processes that act at different spatial and temporal scales. In this study, the relative importance of processes causing coastal sea level variability at different time-scales is evaluated. Contributions from the altimetry-derived sea-level (including the sea level rise due to the ocean warming and land ice loss in response to climate change), dynamical atmospheric forcing induced sea level (surges), wave-induced run-up and set-up, and astronomical tides are estimated from observational datasets and reanalyses. As these processes impact the coast differently, evaluating their importance is essential for assessment of the local coastline vulnerability. A case study is developed in the Gulf of Guinea over the 1993–2012 period. The leading contributors to sea level variability off Cotonou differ depending on the time-scales considered. The trend is largely dominated by processes included in altimetric data and to a lesser extent by swell-waves run-up. The latter dominates interannual variations. Swell-waves run-up and tides dominate subannual variability. Extreme events are due to the conjunction of high tides and large swell run-up, exhibiting a clear seasonal cycle with more events in boreal summer and a trend mostly related to the trend in altimetric-derived sea-level.  相似文献   
257.
258.

2070 unique, homogeneous photometric and polarization observations of the microquasar in a binary system with a black hole V404 Cyg/GS2023+338 obtained in 2015 with the MASTER global network of robotic telescopes (16 robotic telescopes located at eight points on the Earth in Russia, Spain, South Africa, and Argentina) are presented. MASTER was the first telescope network to obtain optical observations of the microquasar after its gamma-ray outburst in 2015. Observations were carried out from 18:34:09 UT on June 15, 2015 until December 2015 in four polarizations and in the four standard BV RI filters. The paper presents the results of these observations and a comparative analysis of optical and X-ray data. The observations confirm the previously discovered super-long delays of the optical radiation relative to the X-ray outbursts. Possible mechanisms causing the delay in the optical variations relative to the X-ray variations are discussed. Variability of the optical polarization discovered earlier is confirmed another similar episode reported.

  相似文献   
259.
Fluvial processes have the potential to obscure, expose, or even destroy portions of the archaeological record. Floodplain aggradation can bury and hide archaeological features, whereas actively migrating channels can erode them. The archaeological record preserved in the subsurface of a fluvial system is potentially fragmented and is three‐dimensionally complex, especially when the system has been subjected to successive phases of alluviation and entrenchment. A simulation model is presented to gain insight into the threedimensional subsurface distribution, visibility, and preservation potential of the archaeological record in a meander‐floodplain system as a function of geomorphic history. Simulation results indicate that fluvial cut‐fill cycles can strongly influence the density of archaeological material in the subsurface. Thus, interpretation of floodplain habitation based solely upon features visible in the shallow subsurface (through traditional techniques such as aerial photography and geophysical prospection) can be misleading. In the examples, the loss of archaeological record by channel migration ranges between 45% and 90% over 12,000 years for channel belt‐dominated systems, decreasing to 10 to 30% for rivers where the floodplain width is a multiple of channel belt width. The modeling presented can be used to test excavation strategies in relation to hypothesized scenarios of stratigraphic evolution for archaeological sites. © 2006 Wiley Periodicals, Inc.  相似文献   
260.
We present a detailed rock-magnetic and paleomagnetic survey from Autlan volcanic succession in western Mexico. The principal aim of this study is to extend paleomagnetic data from Autlan lavas in order to confirm vertical-axis rotation observed in reconnaissance study and to evaluate long-term variation of the geomagnetic field strength based on existing and global data. The mean inclination (44.7°) is in agreement with the expected inclination for 60 and 70 Ma, as derived from available reference poles for the North American craton. The declination (333.6°), however, is significantly different from those expected, which suggests a statistically significant counterclockwise tectonic rotation ranging between 10° ± 6° and 14° ± 7°. As a measure of paleosecular variation (PSV), we obtained a geomagnetic field dispersion of 9.6° (upper and lower limits: 7.2°–11.9°) in perfect agreement with the previously published PSV compilation of selected Cretaceous data from lavas. The mean virtual dipole moments available for Autlan lavas are about 65% of the present geomagnetic axial dipole but are in reasonably good agreement with other comparable quality determinations between 5 and 90 Ma. This reinforces the hypothesis that low geomagnetic field strengths persisted for the entire Jurassic extending into the Upper Cretaceous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号