首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   18篇
  国内免费   4篇
测绘学   2篇
大气科学   11篇
地球物理   41篇
地质学   128篇
海洋学   32篇
天文学   33篇
自然地理   30篇
  2023年   2篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   13篇
  2015年   11篇
  2014年   6篇
  2013年   18篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   14篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1999年   11篇
  1998年   4篇
  1997年   7篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   6篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1960年   1篇
排序方式: 共有277条查询结果,搜索用时 718 毫秒
141.
The turbulent heat flux from arctic leads   总被引:2,自引:0,他引:2  
The turbulent transfer of heat from Arctic leads in winter is one of the largest terms in the Arctic heat budget. Results from the AIDJEX Lead Experiment (ALEX) suggest that the sensible component of this turbulent heat flux can be predicted from bulk quantities. Both the exponential relation N = 0.14R x 0.72 and the linear relation N = 1.6 × 10–3 R x+ 1400 fit our data well. In these, N is the Nusselt number formed with the integrated surface heat flux, and R x is the Reynolds number based on fetch across the lead. Because of the similarity between heat and moisture transfer, these equations also predict the latent heat flux. Over leads in winter, the sensible heat flux is two to four times larger than the latent heat flux.The internal boundary layer (IBL) that develops when cold air encounters the relatively warm lead is most evident in the modified downwind temperature profiles. The height of this boundary layer, , depends on the fetch, x, on the surface roughness of the lead, z 0 and on both downwind and upwind stability. A tentative, empirical model for boundary layer growth is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes% 7aKbqaaiaadQhadaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0JaeqOS% di2aaeWaaeaacqGHsisldaWcaaqaaiaadQhadaWgaaWcbaGaaGimaa% qabaaakeaacaWGmbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGim% aiaac6cacaaI4aaaaOWaaeWaaeaadaWcaaqaaiaadIhaaeaacaWG6b% WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa% baGaaGimaiaac6cacaaI0aaaaaaa!472D!\[\frac{\delta }{{z_0 }} = \beta \left( { - \frac{{z_0 }}{L}} \right)^{0.8} \left( {\frac{x}{{z_0 }}} \right)^{0.4} \] where L is the Obukhov length based on the values of the momentum and sensible heat fluxes at the surface of the lead, and is a constant reflecting upwind stability.Velocity profiles over leads are also affected by the surface nonhomogeneity. Besides being warmer than the upwind ice, the surface of the lead is usually somewhat rougher. The velocity profiles therefore tend to decelerate near the surface, accelerate in the mid-region of the IBL because of the intense mixing driven by the upward heat flux, and rejoin the upwind profiles above the boundary layer. The profiles thus have distinctly different shapes for stable and unstable upwind conditions.  相似文献   
142.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   
143.
The system peridotite-H2O-CO2 serves as a simplified model forthe phase relations of mantle peridotite involving more thanone volatile component. Run products obtained in a study ofphase relations of four mantle peridotites in the presence ofH2O- and (H2O+CO2)-bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0?85 to approximately0?50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/(Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite.  相似文献   
144.
The system peridotite-H2O–CO2 serves as a simplified modelfor the phase relations of mantle peridotite involving morethan one volatile component. Run products obtained in a studyof phase relations of four mantle peridotites in the presenceof H2O- and (H2O+CO2)- bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2 from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0-85 to approximately0.50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite. Liquids formed by anatexis of mantle peridotite are andesiticunder conditions of XH2Ov > 0.6 to at least 25 kb total pressureand to more than 200?C above the peridotite solidus. This observationsupports numerous suggestions that andesite genesis in islandarcs may result from partial melting of underlying peridotitemantle. In contrast to basaltic rocks, the absence of amphibole(paragasitic hornblende) does not affect the silica-saturatednature of the liquids. Increasing K2O content of the startingmaterial (up to 1 wt. per cent K2O) results in increasing potassiumcontent of the amphibole (1 wt. per cent K2O) as well as theappearance of phlogopite. The liquid under these conditionsis relatively K20-poor (less than 1 wt. per cent K2O). Partial melts are olivine normative with XH2O 0.5, and initialliquids contain normative ol and ne at XH2O 0.4. The alkalinityof these liquids increases with decreasing XH2O below valuesof 0.5. The (ol+opx)-normative liquids resemble oceanic basaltswhereas (ol+ne)-normative liquids resemble olivine nepheliniteand melilite basalt. Low aHlo and high aCo2 conditions may bethose under which kimberlites and related rocks are formed inthe mantle.  相似文献   
145.
Holocene glacial variations in Sarek National Park, northern Sweden   总被引:3,自引:0,他引:3  
Detailed mapping of well-preserved moraine systems fronting 17 small alpine glaciers in Sarek National Park in Swedish Lapland reveals two Holocene intervals of prolonged glacier expansion, each involving a complex of minor fluctuations. The younger interval, which corresponds to the Little Ice Age, experienced advances that culminated about A.D. 1916–1920, 1880–1890, 1850–1860, 1800–1810, 1780, 1700–1720, 1680, 1650, and 1590–1620. The older expansion interval, which probably centered around 2500 14C yr B.P., experienced several minor fluctuations spread through about 600 years.
Lichen data collected on moraine systems in Sarek are internally consistent from glacier to glacier. Lichen measurements on surfaces of known age in Sarek and nearby Kebnekaise match closely, allowing moraine correlations between these areas. Several older expansion intervals are recorded in the Kebnekaise Mountains. Taken together, the two sequences suggest that a series of prolonged expansion intervals, each similar to the Little Ice Age, has characterized the Holocene in Lapland. Fluctuations of the Scandinavian Ice Sheet in Sweden suggest that this series of Little-Ice-Age events extends back into the late Weichsel in the form of the Younger Dryas and Oldest Dryas stadials.  相似文献   
146.
An attempt is made to show that the change of angular momentum of the earth, caused by glaciations, may compensate the slowing down effect from tidal friction forces and even reverse the polarity in the terrestrial magnetic field.  相似文献   
147.
148.
The North West Shelf is an ocean‐facing carbonate ramp that lies in a warm‐water setting adjacent to an arid hinterland of moderate to low relief. The sea floor is strongly affected by cyclonic storms, long‐period swells and large internal tides, resulting in preferentially accumulating coarse‐grained sediments. Circulation is dominated by the south‐flowing, low‐salinity Leeuwin Current, upwelling associated with the Indian Ocean Gyre, seaward‐flowing saline bottom waters generated by seasonal evaporation, and flashy fluvial discharge. Sediments are palimpsest, a variable mixture of relict, stranded and Holocene grains. Relict intraclasts, both skeletal and lithic, interpreted as having formed during sea‐level highstands of Marine Isotope Stages (MIS) 3 and 4, are now localized to the mid‐ramp. The most conspicuous stranded particles are ooids and peloids, which 14C dating shows formed at 15·4–12·7 Ka, in somewhat saline waters during initial stages of post‐Last Glacial Maximum (LGM) sea‐level rise. It appears that initiation of Leeuwin Current flow with its relatively less saline, but oceanic waters arrested ooid formation such that subsequent benthic Holocene sediment is principally biofragmental, with sedimentation localized to the inner ramp and a ridge of planktic foraminifera offshore. Inner‐ramp deposits are a mixture of heterozoan and photozoan elements. Depositional facies reflect episodic environmental perturbation by riverine‐derived sediments and nutrients, resulting in a mixed habitat of oligotrophic (coral reefs and large benthic foraminifera) and mesotrophic (macroalgae and bryozoans) indicators. Holocene mid‐ramp sediment is heterozoan in character, but sparse, most probably because of the periodic seaward flow of saline bottom waters generated by coastal evaporation. Holocene outer‐ramp sediment is mainly pelagic, veneering shallow‐water sediments of Marine Isotope Stage 2, including LGM deposits. Phosphate accumulations at ≈ 200 m water depth suggest periodic upwelling or Fe‐redox pumping, whereas enhanced near‐surface productivity, probably associated with the interaction between the Leeuwin Current and Indian Ocean surface water, results in a linear ridge of pelagic sediment at ≈ 140 m water depth. This ramp depositional system in an arid climate has important applications for the geological record: inner‐ramp sediments can contain important heterozoan elements, mid‐ramp sediments with bedforms created by internal tides can form in water depths exceeding 50 m, saline outflow can arrest or dramatically slow mid‐ramp sedimentation mimicking maximum flooding intervals, and outer‐ramp planktic productivity can generate locally important fine‐grained carbonate sediment bodies. Changing oceanography during sea‐level rise can profoundly affect sediment composition, sedimentation rate and packaging.  相似文献   
149.
ABSTRACT. A Scots pine ( Pinus sylvestris L.) tree-ring width chronology from Jämtland, in the central Scandinavian Mountains, built from living and sub-fossil wood, covering the period 1632 BC to AD 2002, with a minor gap during AD 887–907, is presented. This is the first multi-millennial tree-ring chronology from the central parts of Fennoscandia. Pine growth in this tree line environment is mainly limited by summer temperatures, and hence the record can be viewed as a temperature proxy. Using the regional curve standardization (RCS) technique, pine-growth variability on short and long time scales was retained and subsequently summer (June–August) temperatures were reconstructed yielding information on temperature variability during the last 3600 years. Several periods with anomalously warm or cold summers were found: 450–550 BC (warm), AD 300–400 (cold), AD 900–1000 (the Medieval Warm Period, warm) and AD 1550–1900 (Little Ice Age, cold). The coldest period was encountered in the fourth century AD and the warmest period 450 to 550 BC. However, the magnitude of these anomalies is uncertain since the replication of trees in the Jämtland record is low during those periods. The twentieth century warming does not stand out as an anomalous feature in the last 3600 years. Two multi-millennial tree-ring chronologies from Swedish and Finnish Lapland, which have previously been used as summer temperature proxies, agree well with the Jämtland record, indicating that the latter is a good proxy of local, but also regional, summer temperature variability.  相似文献   
150.
 Contaminated ground forms a problem in all of the industrialized countries of the world. Contaminated ground may give rise to hazards and that implies a degree of risk which also involves a problem of definition. The investigation of a site which is suspected of being contaminated differs somewhat from a routine site investigation. Sampling of soil, groundwater and gas-producing material may be required. Various precautions may be necessary to do this and personnel may have to wear protective clothing. The first case history considered involves a site investigation for a relief sewer in Glasgow. As the site investigation progressed it ran into made-ground which contained chemical waste. The presence of this waste meant that the nature of the investigation changed and much more stringent safety precautions had to be taken. It also meant that the initial location of the sewer tunnel had to be repositioned at greater depth in uncontaminated sandstone rather than in the superficial deposits above. The other case history considers the contamination of sediments in the Forth Estuary. When trace metals are released into the water column they can be transferred rapidly to the sediment phase by adsorption onto suspended particulate matter, followed by sedimentation. Intertidal flats may be considered as important trace metal sinks since they accumulate large amounts of suspended matter. Hence, in polluted estuaries the deposition of suspended particles on intertidal flats may thus cause severe contamination. The Forth Estuary has unique contamination for British estuaries; it is experiencing significant Hg pollution. In addition, due to the presence of a nuclear submarine base in the Forth Estuary, 60Co is detectable in the intertidal sediments. Temporal and spatial contamination patterns were analysed in relation to historical and present pollution point sources. The effect of fluvial and marine sediment mixing on trace metals and other processes controlling contaminant levels is reviewed. Preliminary results on quantifying sediment accretion rates using Caesium levels are discussed. Received: 9 August 1996 · Accepted: 17 December 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号