Variables related to urban park awareness are identified and methods for relaxing assumptions of perfect information in park use models are discussed. Park awareness is related to park characteristics (age and degree of development of the park), population characteristics (race, age, length of residence, recreation participation), and distance. Park attributes are stronger predictors of both park awareness and use than is distance. These findings parallel similar research on the cognitive aspects of shopping decisions. 相似文献
The Delphi technique for judgmental forecasting by expert groups is described and the controversy surrounding its use is summarized. The technique clearly does not eliminate all unwanted psychological effects on group judgment. Furthermore, the design of most Delphi studies makes it impossible to separate the signal from the noise in expert judgment. A methodological standard for evaluating judgmental forecasts is proposed. 相似文献
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude. 相似文献
Analysis of monthly momentum transport of zonal waves at 850 hPa for the period 1979 to 1993, between ‡S and ‡N for January
to April, using zonal (u) and meridional (v) components of wind taken from the ECMWF reanalysis field, shows a positive correlation (.1% level of significance) between
the Indian summer monsoon rainfall (June through September) and the momentum transport of wave zero TM(0) over latitudinal
belt between 25‡S and 5‡N (LB) during March. Northward (Southward) TM(0) observed in March over LB subsequently leads to a
good (drought) monsoon season over India which is found to be true even when the year is marked with the El-Nino event. Similarly
a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, even if the year
is marked with El-Nino. The study thus suggests two predictors, TM(0) over LB and the strength of westerly zone in the Indian
Ocean during March. 相似文献
Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping. 相似文献
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms,
and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the
most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by
electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern
Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have
been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations
in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed
by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect
ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges
show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of
IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest
that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons
may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes
(TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric
circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant
meso-scale effects, but negligible global effects. 相似文献
Laminar sheetflows, transporting sediment at their capacity rates, both with and without rainfall disturbance, were investigated. Values of flow depth and relative submergence were very small. In the flows without rainfall, measured velocities exceeded the predictions of the smooth-surface, clear-water laminar model by an average of 12 per cent. Reduced flow resistance due to high sediment concentrations may explain this result. Velocities in the rainfall-disturbed flows were not significantly different from the predictions of the smooth-surface, clear-water model, and the velocity reduction due to rainfall was about 12 per cent. Although the uniformity of rainfall intensity under the single-nozzle rainfall simulator is high, variation of momentum and kinetic energy fluxes along the 1-5 m long flume was significant. The rainfall angle of incidence was highly correlated with deviations from expected flow velocities in the upper and lower sections of the flume. 相似文献
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.
Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism. 相似文献