首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49458篇
  免费   641篇
  国内免费   324篇
测绘学   1335篇
大气科学   3835篇
地球物理   9296篇
地质学   16283篇
海洋学   4181篇
天文学   12171篇
综合类   108篇
自然地理   3214篇
  2020年   342篇
  2019年   338篇
  2018年   831篇
  2017年   811篇
  2016年   1053篇
  2015年   697篇
  2014年   1170篇
  2013年   2443篇
  2012年   1113篇
  2011年   1545篇
  2010年   1437篇
  2009年   1932篇
  2008年   1776篇
  2007年   1780篇
  2006年   1679篇
  2005年   1544篇
  2004年   1509篇
  2003年   1415篇
  2002年   1357篇
  2001年   1230篇
  2000年   1157篇
  1999年   1123篇
  1998年   1057篇
  1997年   1064篇
  1996年   847篇
  1995年   836篇
  1994年   794篇
  1993年   739篇
  1992年   710篇
  1991年   680篇
  1990年   776篇
  1989年   675篇
  1988年   648篇
  1987年   743篇
  1986年   621篇
  1985年   826篇
  1984年   951篇
  1983年   912篇
  1982年   864篇
  1981年   819篇
  1980年   723篇
  1979年   698篇
  1978年   692篇
  1977年   627篇
  1976年   598篇
  1975年   518篇
  1974年   597篇
  1973年   587篇
  1972年   362篇
  1971年   334篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The wave propagation in a finitely conducting, self-gravitating, non-relativistic hydromagnetic medium with temperature gradient and a heat-energy transport into it has been considered. Firstly, a General Dispersion Relation (G.D.R.) has been derived. The interest has been kept limited for the study of one dimensional wave propagation in a typical medium where magnetic field and it's gradient, density gradient, temperature gradient are all along the direction of wave propagation. The D.R. of such a medium follows from G.D.R. In particular, the effect of temperature gradient on the wave propagation has been studied. Analytical expressions for the wave parameters have been derived under different conditions. It has been found that the longitudinal waves could be sufficiently energetic for being unstable by the temperature gradient. Further, the modified Jeans' criterion (depending on temperature gradient), a criterion important for stability, has also been obtained.On assuming the gas medium in the central region ( 10 pc) of our Galaxy to behave like hydromagnetic fluid, and the direction of wave propagation (z-direction) as the direction perpendicular to the Galactic plane, few numerical estimations for the wave parameters (like wave lengths, phase velocity, etc.) have been made (as application of the above theoretical discussions). It has been found that the phase velocity of longitudinal waves at 1 pc level is at least 170 kms–1 while at the 10 pc level the longitudinal waves of length less than a parsec may propagate smoothly through the medium. It has been suggested that (i) in the central region ( 10 pc) of our Galaxy the temperature gradient could be one of the major causes of the mass-outflow along the direction perpendicular to the Galactic plane (ii) outside the central region ( 10 pc) of our Galaxy, there may be long term consequences of such mass-outflow like Halo formation.  相似文献   
942.
943.
McKay CP  Pollack JB  Lunine JI  Courtin R 《Icarus》1993,102(1):88-98
We have developed a coupled atmosphere and ocean model of Titan's surface. The atmospheric model is a 1-D spectrally-resolved radiative-convective model. The ocean thermodynamics are based upon solution theory. The ocean, initially composed of CH4, becomes progressively enriched in ethane over time. The partial pressures of N2 and CH4 in the atmosphere are dependent on the ocean temperature and composition. We find that the resulting system is stable against a runaway greenhouse. Accounting for the decreased solar luminosity, we find that Titan's surface temperature was about 20 K colder 4 Gyr ago. Without an ocean, but only small CH4 lakes, the temperature change is 12 K. In both cases we find that the surface of Titan may have been ice covered about 3 Gyr ago. In the lakes case condensation of N2 provides the ice, whereas in the ocean case the ocean freezes. The dominant factor influencing the evolution of Titan's surface temperature is the change in the solar constant--amplified, if an ocean is present, by the temperature dependence of the solubility of N2. Accretional heating can dramatically alter the surface temperature; a surface thermal flux of 500 erg cm-2 sec-1, representative of small levels of accretional heating, results in a approximately 20 K change in surface temperatures.  相似文献   
944.
During the inbound segment of the Ulysses flyby of Jupiter, there were multiple incursions into the dawnside low-latitude boundary layer, as identified by Bame et al. (Science257, 1539–1542, 1992) using plasma electron data. In the present study, ion composition and spectral measurements provide independent collaborative evidence for the existence of distinct boundary layer regions. Measurements are taken in the energy-per-charge range of 0.6–60 keV/e and involve mass as well as mass-per-charge identification by the Ulysses/SWICS experiment. Ion species of Jovian magnetospheric origin (including O+, O2+, S2+, S3+) and sheath origin (including He2+ and high charge state CNO) have been directly identified for the first time in the Jovian magnetospheric boundary layer. Protons of probably mixed origin and He+ of possibly sheath (ultimately interstellar pickup) origin were also observed in the boundary layer. Sheath-like ions are observed throughout the boundary layer; however, the Jovian ions are depleted or absent for portions of two boundary layer cases studied. Ions of solar wind origin are observed within the outer magnetosphere. and ions of magnetospheric origin are found within the sheath, indicating that transport across the magnetopause boundary can work both ways, at least under some conditions. Although their source cannot be uniquely identified, the proton energy spectrum in the boundary layer suggests a sheath origin for the lower energy protons.  相似文献   
945.
We examine the energetic (MeV) ion data obtained by the Anisotropy Telescopes instrument of the Ulysses COSPIN package during two northern high-latitude excursions prior to closest approach to Jupiter, when the spacecraft left the region of trapped fluxes on closed magnetic field lines at lower latitudes and entered a region of open field lines which we term the polar cap. During these intervals the ion fluxes dropped by 4–5 orders of magnitude to low but very steady values, and the ion spectrum was consistent with the observation of an essentially unprocessed interplanetary population. Ion anisotropies observed at these distances (within 16RJ, of Jupiter) indicate that in the low-latitude, high-flux regions the flows are principally azimuthail and in the sense of corotation, with speeds which are within a factor of 2 (in either direction) of rigid corotation. In the higher latitude trapped flux regions the flows rotate to become northward as the polar cap is approached, while in the polar cap itself the flows rotate further to become anti-corotational (and anti-sunward in the morning sector) and northward. These results provide primary evidence of the existence of solar wind-driven flows in the outer Jovian magnetosphere mapping to the high-latitude ionosphere. Investigation of concurrent magnetic data for the signatures of related field-aligned currents reveals only weak signatures with an amplitude of order 1 nT. The implication is that the height-integrated Pedersen conductivity of the ionosphere to which the spacecraft was connected was low, of order 0.01 mho or less. We also examine the ion observations during the two northern high-latitude excursions previous to those discussed above. These data indicate that the spacecraft approached but did not penetrate the open flux region during these intervals.  相似文献   
946.
947.
948.
We investigate the effect of a variable, i.e. time-dependent, background on the standing acoustic (i.e. longitudinal) modes generated in a hot coronal loop. A theoretical model of 1D geometry describing the coronal loop is applied. The background temperature is allowed to change as a function of time and undergoes an exponential decay with characteristic cooling times typical for coronal loops. The magnetic field is assumed to be uniform. Thermal conduction is assumed to be the dominant mechanism for damping hot coronal oscillations in the presence of a physically unspecified thermodynamic source that maintains the initial equilibrium. The influence of the rapidly cooling background plasma on the behaviour of standing acoustic (longitudinal) waves is investigated analytically. The temporally evolving dispersion relation and wave amplitude are derived by using the Wenzel–Kramers–Brillouin theory. An analytic solution for the time-dependent amplitude that describes the influence of thermal conduction on the standing longitudinal (acoustic) wave is obtained by exploiting the properties of Sturm–Liouville problems. Next, numerical evaluations further illustrate the behaviour of the standing acoustic waves in a system with a variable, time-dependent background. The results are applied to a number of detected loop oscillations. We find a remarkable agreement between the theoretical predictions and the observations. Despite the emergence of the cooling background plasma in the medium, thermal conduction is found to cause a strong damping for the slow standing magneto–acoustic waves in hot coronal loops in general. In addition to this, the increase in the value of thermal conductivity leads to a strong decay in the amplitude of the longitudinal standing slow MHD waves.  相似文献   
949.
Small-scale magnetic fields can be observed on the Sun in high-resolution G-band filtergrams as magnetic bright points (MBPs). We study Hinode/Solar Optical Telescope (SOT) longitude and latitude scans of the quiet solar surface taken in the G-band in order to characterise the centre-to-limb dependence of MBP properties (size and intensity). We find that the MBP’s sizes increase and their intensities decrease from the solar centre towards the limb. The size distribution can be fitted using a log–normal function. The natural logarithm of the mean (μ parameter) of this function follows a second-order polynomial and the generalised standard deviation (σ parameter) follows a fourth-order polynomial or equally well (within statistical errors) a sine function. The brightness decrease of the features is smaller than one would expect from the normal solar centre-to-limb variation; that is to say, the ratio of a MBP’s brightness to the mean intensity of the image increases towards the limb. The centre-to-limb variations of the intensities of the MBPs and the quiet-Sun field can be fitted by a second-order polynomial. The detailed physical process that results in an increase of a MBP’s brightness and size from Sun centre to the limb is not yet understood and has to be studied in more detail in the future.  相似文献   
950.
The LOw Frequency ARray (LOFAR) is a next-generation radio telescope which uses thousands of stationary dipoles to observe celestial phenomena. These dipoles are grouped in various ‘stations’ which are centred on the Netherlands with additional ‘stations’ across Europe. The telescope is designed to operate at frequencies from 10 to 240 MHz with very large fractional bandwidths (25?–?100 %). Several ‘beam-formed’ observing modes are now operational and the system is designed to output data with high time and frequency resolution, which are highly configurable. This makes LOFAR eminently suited for dynamic spectrum measurements with applications in solar and planetary physics. In this paper we describe progress in developing automated data analysis routines to compute dynamic spectra from LOFAR time–frequency data, including correction for the antenna response across the radio frequency pass-band and mitigation of terrestrial radio-frequency interference (RFI). We apply these data routines to observations of interplanetary scintillation (IPS), commonly used to infer solar wind velocity and density information, and present initial science results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号