首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101601篇
  免费   1648篇
  国内免费   2220篇
测绘学   3421篇
大气科学   7869篇
地球物理   19822篇
地质学   38161篇
海洋学   7874篇
天文学   19547篇
综合类   2448篇
自然地理   6327篇
  2021年   701篇
  2020年   743篇
  2019年   777篇
  2018年   6060篇
  2017年   5304篇
  2016年   4342篇
  2015年   1505篇
  2014年   2094篇
  2013年   3975篇
  2012年   3136篇
  2011年   5514篇
  2010年   4590篇
  2009年   5663篇
  2008年   4880篇
  2007年   5323篇
  2006年   3125篇
  2005年   2662篇
  2004年   2755篇
  2003年   2599篇
  2002年   2331篇
  2001年   1908篇
  2000年   1830篇
  1999年   1622篇
  1998年   1624篇
  1997年   1568篇
  1996年   1271篇
  1995年   1254篇
  1994年   1168篇
  1993年   1070篇
  1992年   1036篇
  1991年   991篇
  1990年   1128篇
  1989年   966篇
  1988年   923篇
  1987年   1075篇
  1986年   906篇
  1985年   1163篇
  1984年   1364篇
  1983年   1263篇
  1982年   1210篇
  1981年   1168篇
  1980年   1059篇
  1979年   986篇
  1978年   961篇
  1977年   915篇
  1976年   842篇
  1975年   759篇
  1974年   827篇
  1973年   845篇
  1972年   515篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
701.
The possible avenues for photoelectron transport were determined during southern hemisphere winter at Mars by using a mapping analysis of the theoretical magnetic field. Magnetic field line tracing was performed by superposing two magnetic field models: (1) magnetic field derived from a three-dimensional (3D) self-consistent quasi-neutral hybrid model which does not contain the Martian crustal magnetic anomalies and (2) a 3D map of the magnetic field associated with the magnetic anomalies based on Mars Global Surveyor magnetic field measurements. It was found that magnetic field lines connected to the nightside of the planet are mainly channeled within the optical shadow of the magnetotail whereas magnetic field lines connected to the dayside of the planet are observed to form the remainder of the magnetosphere. The simulation suggests that the crustal anomalies create “a magnetic shield” by decreasing the region near Mars which is magnetically connected to the Martian magnetosphere. The rotation of Mars causes periodic changes in magnetic connectivity, but not to qualitative changes in the overall magnetic field draping around Mars.  相似文献   
702.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   
703.
A catalogue of dwarf stars with different manifestations of Solar-type activity is compiled based on publications of the last 10–15 years. The catalogue includes objects with dark spots, hydrogen and calcium chromospheric emission, short-lived flares in different wavelength ranges, and radio and X-ray emission of stellar corona. The resulting compiled list includes 5535 objects.  相似文献   
704.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for \(\mu_{c}\le\mu <\frac{1}{2}\), where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   
705.
A serious difficulty with the standard alpha‐omega theory of the origin of galactic magnetic fields involves the question of flux expulsion. This is intimately related to flux freezing. The alpha‐omega theory is shown in the context of the giant superbubble explosions that have a large impact on the physics of the interstellar medium. It is shown that superbubbles alone can duplicate the processes of the alpha‐omega dynamo and produce exponential growth of the galactic magnetic field. The possibility of the blow‐out of pieces of the magnetic field is discussed and it is shown that they have the potential to solve the flux‐expulsion problem. However, such an explanation must lead to apparent ‘gaps’ in the field in the galactic disc. These gaps are probably unavoidable in any dynamo theory and should have important observable consequences, one of which is an explanation for the escape of cosmic rays from the disc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
706.
707.
The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun–Earth–Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin’s Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem’s state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth–Moon and Sun–Earth is presented leading to a physical interpretation of the different families of trajectories.  相似文献   
708.
To understand the physics of sunspots, it is important to know the properties of their magnetic field, and especially its height stratification plays a substantial role. There are mainly two methods to assess this stratification, but they yield different magnetic gradients in the photospheric layers. Determinations based on the several spectral lines of different formation heights and the slope of their profiles result in gradients of ?2 to ?3 G?km?1, or even steeper. This is similar for the total magnetic field strength and for the vertical component of the magnetic field. The other option is to determine the horizontal partial derivatives of the magnetic field, and with the condition \(\operatorname{div} {{\boldsymbol {B}}} = 0\) also the vertical derivative is known. With this method, gradients of ?0.5 G?km?1 and even shallower are obtained. Obviously, these results do not agree. If chromospheric spectral lines are included, only shallow gradients around ?0.5 G?km?1 are obtained. Shallow gradients are also found from gyro-resonance measurements in the radio wave range 300?–?2000 GHz.Some indirect methods are also considered, but they cannot clarify the total picture. An analysis of a numerical simulation of a sunspot indicates a shallow gradient over a wide height range, but with slightly steeper gradients in deep layers.Several ideas to explain the discrepancy are also discussed. With no doubts cast on Maxwell’s equations, the first one is to look at the uncertainties of the formation heights of spectral lines, but a wider range of these heights would require an extension of the solar photosphere that is incompatible with observations and the theory of stellar atmospheres. Submerging and rising magnetic flux might play a role in the outer penumbra, if the resolution is too low to separate them, but it is not likely that this effect acts also in the umbra. A quick investigation assuming a spatial small scale structure of sunspots together with twist and writhe of individual flux tubes shows a reduction of the measured magnetic field strength for spectral lines sensitive to a larger height range. However, sophisticated investigations are required to prove that the explanation for the discrepancy lies here, and the problem of the height gradient of the magnetic field in sunspots is still not solved.  相似文献   
709.
Abstract— We report spectroscopic observations of meteors made from the FISTA aircraft on 1998 November 17 as a part of the Leonid multi-instrument aircraft campaign. Low-resolution spectra of 119 meteors of apparent visual magnitudes from +3 to ?4, corresponding to meteoroid masses from 10?6 to 10?3 kg, were obtained. After analyzing a representative sample of the spectra and comparing them to the spectra of Perseid meteors from the Ondrejov archive, the following conclusions were reached: Leonid meteoroids are very loose and disintegrate easily in the atmosphere. This leads to much faster evaporation of volatile Na than of other elements, an effect which is not observed in the Perseid meteors. Relative bulk abundances of Mg, Fe, Ca, and Na in Leonid meteors are nearly CI-chondritic within the uncertainty of the method (factor of 3). Smaller meteoroids tend to be poorer in Na, which is true also for Perseid meteors. Most meteoric vapor emissions could be reasonably well explained with the temperature of 4500 K. High-temperature meteoric emissions (Ca+, Mg+) are present only in bright meteors. Leonid spectra are very rich in atmospheric emissions of O, N, and N2, even at high altitudes and in faint meteors. These emissions are therefore not connected with the meteor shock wave. Thermal continuum is also present in the spectra. Organic material was not revealed.  相似文献   
710.
Priest  E.R.  Schrijver  C.J. 《Solar physics》1999,190(1-2):1-24
In this review paper we discuss several aspects of magnetic reconnection theory, focusing on the field-line motions that are associated with reconnection. A new exact solution of the nonlinear MHD equations for reconnective annihilation is presented which represents a two-fold generalization of the previous solutions. Magnetic reconnection at null points by several mechanisms is summarized, including spine reconnection, fan reconnection and separator reconnection, where it is pointed out that two common features of separator reconnection are the rapid flipping of magnetic field lines and the collapse of the separator to a current sheet. In addition, a formula for the rate of reconnection between two flux tubes is derived. The magnetic field of the corona is highly complex, since the magnetic carpet consists of a multitude of sources in the photosphere. Progress in understanding this complexity may, however, be made by constructing the skeleton of the field and developing a theory for the local and global bifurcations between the different topologies. The eruption of flux from the Sun may even sometimes be due to a change of topology caused by emerging flux break-out. A CD-ROM attached to this paper presents the results of a toy model of vacuum reconnection, which suggests that rapid flipping of field lines in fan and separator reconnection is an essential ingredient also in real non-vacuum conditions. In addition, it gives an example of binary reconnection between a pair of unbalanced sources as they move around, which may contribute significantly to coronal heating. Finally, we present examples in TRACE movies of geometrical changes of the coronal magnetic field that are a likely result of large-scale magnetic reconnection. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005248007615  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号