首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55033篇
  免费   895篇
  国内免费   353篇
测绘学   1493篇
大气科学   4435篇
地球物理   10809篇
地质学   18481篇
海洋学   4473篇
天文学   12999篇
综合类   135篇
自然地理   3456篇
  2021年   413篇
  2020年   468篇
  2019年   438篇
  2018年   1111篇
  2017年   1091篇
  2016年   1404篇
  2015年   965篇
  2014年   1479篇
  2013年   2885篇
  2012年   1463篇
  2011年   1868篇
  2010年   1745篇
  2009年   2245篇
  2008年   1989篇
  2007年   1954篇
  2006年   1850篇
  2005年   1674篇
  2004年   1647篇
  2003年   1518篇
  2002年   1467篇
  2001年   1315篇
  2000年   1226篇
  1999年   1178篇
  1998年   1112篇
  1997年   1135篇
  1996年   891篇
  1995年   896篇
  1994年   847篇
  1993年   775篇
  1992年   736篇
  1991年   711篇
  1990年   821篇
  1989年   697篇
  1988年   666篇
  1987年   778篇
  1986年   645篇
  1985年   856篇
  1984年   977篇
  1983年   939篇
  1982年   886篇
  1981年   850篇
  1980年   738篇
  1979年   721篇
  1978年   711篇
  1977年   650篇
  1976年   607篇
  1975年   533篇
  1974年   610篇
  1973年   605篇
  1972年   374篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
An original methodology for the atomistic computer modeling of solid solutions was applied for the study of the mixing properties and local structure of the grossular-uvarovite, i.e., Ca3Al2[SiO4]3 Ca3Cr2][SiO4]3, garnet series. The parameters of the interatomic potentials for end members of this series were optimized using experimental data on their structural, elastic, and thermodynamic characteristics. The optimized model of the potentials allowed us to describe the elastic, structural, and thermodynamic characteristics of grossular and uvarovite and estimate the energy of point defects in these crystal structures. Calculations of the mixing properties and local structure for seven different compositions of the solid solution were carried out on a “Chebyshev” supercomputer (Moscow State University) in a 2 × 2 × 4 supercell of the garnet-type structure containing 2560 atoms. Mixing properties, such as the enthalpy of mixing, parameters of interaction, excess mixing volume, deviation of bulk modulus from additivity, and the vibrational and configuration contribution to the entropy of mixing, were determined. This allowed us to estimate the stability field for the grossular-uvarovite solid solution. Histograms of the interatomic distances M-O (M = Ca, Al, Cr, Si) and O-O in supercells were plotted and the parameters of relaxation and changes of the CrO6 and AlO6 octahedron volumes were estimated. The data of the simulation are quite consistent with the experimental data on this system and supplement it significantly.  相似文献   
912.
A meso‐scale particle model is presented to simulate the expansion of concrete subjected to alkali‐aggregate reaction (AAR) and to analyze the AAR‐induced degradation of the mechanical properties. It is the first attempt to evaluate the deterioration mechanism due to AAR using the discrete‐element method. A three‐phase meso‐scale model for concrete composed of aggregates, mortar and the interface is established with the combination of a pre‐processing approach and the particle flow code, PFC2D. A homogeneous aggregate expansion approach is applied to model the AAR expansion. Uniaxial compression tests are conducted for the AAR‐affected concrete to examine the effects on the mechanical properties. Two specimens with different aggregate sizes are analyzed to consider the effects of aggregate size on AAR. The results show that the meso‐scale particle model is valid to predict the expansion and the internal micro‐cracking patterns caused by AAR. The two different specimens exhibit similar behavior. The Young's modulus and compressive strength are significantly reduced with the increase of AAR expansion. The shape of the stress–strain curves obtained from the compression tests clearly reflects the influence of internal micro‐cracks: an increased nonlinearity before the peak loading and a more gradual softening for more severely affected specimens. Similar macroscopic failure patterns of the specimens under compression are observed in terms of diagonal macroscopic cracks splitting the specimen into several triangular pieces, whereas localized micro‐cracks forming in slightly affected specimens are different from branching and diffusing cracks in severely affected ones, demonstrating different failure mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
913.
914.
Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples.Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization.  相似文献   
915.
916.
As part of the Canadian contribution to the International Polar Year (IPY), several major international research programs have focused on offshore arctic marine ecosystems. The general goal of these projects was to improve our understanding of how the response of arctic marine ecosystems to climate warming will alter food web structure and ecosystem services provided to Northerners. At least four key findings from these projects relating to arctic heterotrophic food web, pelagic-benthic coupling and biodiversity have emerged: (1) Contrary to a long-standing paradigm of dormant ecosystems during the long arctic winter, major food web components showed relatively high level of winter activity, well before the spring release of ice algae and subsequent phytoplankton bloom. Such phenological plasticity among key secondary producers like zooplankton may thus narrow the risks of extreme mismatch between primary production and secondary production in an increasingly variable arctic environment. (2) Tight pelagic-benthic coupling and consequent recycling of nutrients at the seafloor characterize specific regions of the Canadian Arctic, such as the North Water polynya and Lancaster Sound. The latter constitute hot spots of benthic ecosystem functioning compared to regions where zooplankton-mediated processes weaken the pelagic-benthic coupling. (3) In contrast with another widely shared assumption of lower biodiversity, arctic marine biodiversity is comparable to that reported off Atlantic and Pacific coasts of Canada, albeit threatened by the potential colonization of subarctic species. (4) The rapid decrease of summer sea-ice cover allows increasing numbers of killer whales to use the Canadian High Arctic as a hunting ground. The stronger presence of this species, bound to become a new apex predator of arctic seas, will likely affect populations of endemic arctic marine mammals such as the narwhal, bowhead, and beluga whales.  相似文献   
917.
A number of recent optically stimulated luminescence (OSL) studies have cited post-depositional mixing as a dominant source of equivalent dose (De) scatter across a range of sedimentary environments, including those previously considered ‘best suited’ for OSL dating. The potentially insidious nature of sediment mixing means that this problem may often only be identifiable by careful statistical analysis of De data sets. This study aims to address some of the important issues associated with the characterisation and statistical treatment of mixed De distributions at the multi-grain scale of analysis, using simulated De data sets produced with a simple stochastic model. Using this Monte Carlo approach we were able to generate theoretical distributions of single-grain De values, which were then randomly mixed together to simulate multi-grain aliquot De distributions containing a known number of mixing components and known corresponding burial doses. A range of sensitivity tests were undertaken using sediment mixtures with different aged dose components, different numbers of mixing components, and different types of dose component distributions (fully bleached, heterogeneously bleached and significantly overdispersed De distributions). The results of our modelling simulations reveal the inherent problems encountered when dating mixed sedimentary samples with multi-grain De estimation techniques. ‘Phantom’ dose components (i.e. discrete dose populations that do not correspond to the original single-grain mixing components) are an inevitable consequence of the ‘averaging’ effects of multi-grain De analysis, and prevent the correct number of mixing components being identified with the finite mixture model (FMM) for all of the multi-grain mixtures tested. Our findings caution against use of the FMM for multi-grain aliquot De data sets, even when the aliquots consist of only a few grains.  相似文献   
918.
Mode identification is one of the first and main problems we encounter in trying to develop the complete potential of asteroseismology. In the particular case of g‐mode pulsators, this is still an unsolved problem, from both the observational and theoretical points of view. Nevertheless, in recent years, some observational and theoretical efforts have been made to find a solution. In this work we use the latest theoretical and computational tools to understand asymptotic g‐mode pulsators: 1) the Frequency Ratio Method, and 2) Time Dependent Convection. With these tools, a self‐consistent procedure for mode identification and modelling of these g‐mode pulsators can be constructed. This procedure is illustrated using observational information available for the γ Doradus star 9Aurigae. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
919.
Acoustic turbidity caused by the presence of gas bubbles in seafloor sediments is a common occurrence worldwide,but is as yet poorly understood. The Coastal Benthic Boundary Layer experiment in the Baltic off northern Germany was planned to better characterize the acoustic response of a bubbly sediment horizon. In this context, in situ measurements of compressional wave speed and attenuation were made over the frequency range of 5–400 kHz in gassy sediments of Eckernförde Bay. Dispersion of compressional speed data was used to determine the upper limit of the frequency of methane bubble resonance at between 20 and 25 kHz. These data, combined with bubble size distributions determined from CT scans of sediments in cores retained at ambient pressure, yield estimates of effective bubble sizes of 0.3–5.0 mm equivalent radius. The highly variable spatial distribution of bubble volume and bubble size distribution is used to reconcile the otherwise contradictory frequency-dependent speed and attenuation data with theory. At acoustic frequencies above resonance (>25 kHz) compressional speed is unaffected by bubbles and scattering from bubbles dominates attenuation. At frequencies below resonance (<1 kHz) ‘compressibility effects’ dominate, speed is much lower (250 m s-1) than bubble-free sediments, and attenuation is dominated by scattering from impedance contrasts. Between 1.5 and 25 kHz bubble resonance greatly affects speed and attenuation. Compressional speed in gassy sediments (1100–1200 m s-1) determined at 5–15 kHz is variable and higher than predicted by theory (<250 m s-1). These higher measured speeds result from two factors: speeds are an average of lower speeds in gassy sediments and higher speeds in bubble-free sediments; and the volume of smaller-sized bubbles which contribute to the lower observed speeds is much lower than total gas volume. The frequency-dependent acoustic propagation is further complicated as the mixture of bubble sizes selectively strips energy near bubble resonance frequencies (very high attenuation) allowing lower and higher frequency energy to propagate. It was also demonstrated that acoustic characterization of gassy sediments can be used to define bubble size distribution and fractional volume.  相似文献   
920.
1971-2009 年珠穆朗玛峰地区尼泊尔境内气候变化   总被引:3,自引:0,他引:3  
利用珠穆朗玛峰南坡尼泊尔境内(科西河流域) 的10 个气象站1971-2009 年月平均气温、月平均最高、最低气温和逐月降水资料, 采用线性趋势、Sen 斜率估计、Mann-Kendall 等方法分析区域气候变化状况及其时空特征, 并与珠穆朗玛峰北坡地区气候进行比较, 分析了珠穆朗玛峰地区气候变化的特征与趋势。结果表明:(1) 1971-2009 年间, 珠穆朗玛峰南坡年平均气温为20.0℃, 线性升温率为0.25℃/10a, 与北坡主要受年平均最低气温影响相反, 增幅主要受年平均最高气温升高的影响, 并且在1974 年及1992 年间出现两次显著增温, 增温特别明显的月份为2 月和9 月;(2) 该地区降水变化的局地性较强, 近40 年间年平均降水量为1729.01 mm, 年平均降水量以每年约4.27 mm的线性增幅有所增加, 但并不显著, 且降水月变化和季变化特征均不明显;(3) 由于珠穆朗玛峰南坡受到季风带来暖湿气流和喜马拉雅山阻挡的双重影响, 珠峰南坡的年平均降水量远高于北坡;(4) 珠穆朗玛峰南坡气温变暖的海拔依赖性并不明显, 且南坡地区的变暖趋势并没有北坡变暖趋势明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号