Several significant parameters that could affect interaction in a dam-foundation system are discussed. These parameters are: (1) Fundamental periods of the dam and the foundation layer. (2) Lateral extent of the dam. (3) The material properties of the dam and the foundation layer. Five cases are analysed to illustrate the influence of these parameters on interaction. An interaction ratio, R1, relating the response of the dam-foundation system at the base of the dam to the free field response is introduced and interaction effects are expressed in terms of this ratio; the smaller this ratio, the less are the interaction effects. For very small values of R1, it is shown that the dam-foundation system could be decoupled The results of the studies presented in the paper suggest that the interaction effects cannot be uniquely related to either the ratio of the period of the dam to the period of the foundation layer, or to the material properties of the dam and foundation layer. However, for the limited number of cases investigated, the interaction effects were found to be uniquely related to the ratio D/B, where D is the depth of the foundation layer and B is the width of the dam section. For values of D/B less than unity, strong interaction effects were obtained and the dam-foundation system could only be analysed as a coupled system. For values of D/B greater than unity, the interaction appeared negligible and the dam and its foundation layer could be decoupled. It should be noted, however, that for very small values of D/B the interaction effects would decrease becaase as D approaches zero, there would be no interaction The use of the interaction ratio, R1, and the parameter D/B should aid in assessing the need for analysing the response of the dam-foundation as a coupled or as a decoupled system. 相似文献
A mathematical model has been developed to analyze the influence of extreme water waves over multiconnected regions in Visakhapatnam Port, India by considering an average water depth in each multiconnected regions. In addition, partial reflection of incident waves on coastal boundary is also considered. The domain of interest is divided mainly into two regions, i.e., open sea region and harbor region namely as Region-I and Region-II, respectively. Further, Region-II is divided into multiple connected regions. The 2-D boundary element method (BEM) including the Chebyshev point discretization is utilized to solve the Helmholtz equation in each region separately to determine the wave amplification. The numerical convergence is performed to obtain the optimum numerical accuracy and the validation of the current numerical approach is also conducted by comparing the simulation results with existing studies. The four key spots based on the moored ship locations in Visakhapatnam Port are identified to perform the numerical simulation. The wave amplification at these locations is estimated for monochromatic incident waves, considering approximate water depth and different reflection coefficients on the wall of port under the resonance conditions. In addition, wave field analysis inside the Visakhapatnam Port is also conducted to understand resonance conditions. The current numerical model provides an efficient tool to analyze the amplification on any realistic ports or harbors.
Sorptive removal of Ni(II) from electroplating rinse wastewaters by cation exchange resin Dueolite C 20 was investigated at the temperature of 30°C under dynamic conditions in a packed bed. The effects of sorbent bed length 0.1–0.2 m, fixed flow rate 6 dm3 min?1, and the initial rinse water concentration (C0) 53.1 mg L?1 on the sorption characteristics of Dueolite C 20 were investigated at an influent pH of 6.5. More than 94.5% of Ni(II) was removed in the column experiments. The column performance was improved with increasing bed height and decreasing the flow rate. The Thomas, Yoon–Nelson, Clark, and Wolborska models were applied to the experimental data to represent the breakthrough curves and determine the characteristic design parameters of the column. The sorption performance of the Ni(II) ions through columns could be well described by the Thomas, Yoon–Nelson, and Wolborska models at effluent‐to‐influent concentration ratios (C/C0) >0.03 and <0.99. Among the all models, the Clark model showed the least average percentage time deviation. The sorptive capacity of electroplating rinse water using Ni(II) was found to be 45.98 mg g?1. 相似文献
Level-II urban land use information available in this Town and Country Planning maps, Survey of India toposteets for Phillaur and Phagwara towns and the land use information generated through visual interpretation of satellite data was digitized, integrated and analysed using PAMAP GIS. The land use map of the two towns suggest that the wastelands located near the point of present disposal can be utilised for siting sewage treatment plants in both the towns. The STP sites suggested were away from the thickly habttared area. It was observed that some of the areas earmarked for locating STP’s, were partially brought under habitation before the execution of the preject. Hence, it is necessary that planning and execution of such projects should be done on a real time basis so that the sites identified for locating STP’s are not brought under other land uses. 相似文献
Spatial and temporal variability of rainfall over different seasons influence physical, social and economic parameters. Pre-monsoon (March, April and May – MAM) rainfall over the country is highly variable. Since heat lows and convective rainfall in MAM have an impact on the intensity of the ensuing monsoons, hence the pre-monsoon period was chosen for the study. The pre-whitened Mann Kendall test was used to explore presence of rainfall trend during MAM. The results indicate presence of significant (at 10% level) increasing trend in two stations (Ajmer, Bikaner). The practical significance of the change in rainfall was also explored as percentage changes over long term mean, using Theil and Sen's median slope estimator. Forecast using univariate ARIMA model for pre-monsoon months indicates that there is a significant rise in the pre-monsoon rainfall over the northwest part of the country. 相似文献
The carbon isotope measurements, carried out on subsurface carbonate samples from Oxfordian Jaisalmer Formation, western India, yield positive d13C values up to +3.17%. The most positive Oxfordian C-isotope value corresponds to the carbon isotope excursion measured in samples from from other late Jurassic basins of world. The latest Oxfordian C-isotope values of Jaisalmer Basin fluctuate around 2% while the C-isotope values of 1.50% mark the base of Kimmeridgian. The Oxfordian C-isotope excursion appears to correspond to a time of overall increased organic carbon burial triggered by increased nutrient transfer from continents to oceans during a time of rising global sea level. 相似文献
Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets (Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34]. 相似文献
Measurable molybdenum isotope fractionation in molybdenites from different ore deposits through time provides insights into
ore genesis and a new technique to identify open-system behavior of Re–Os in molybdenites. Molybdenite samples from six porphyry
copper deposits, one epithermal polymetallic vein deposit, four skarns, and three Fe-oxide Cu–Au deposits were analyzed. The
δ97Mo‰ (where ) for all samples varied from 1.34 ± 0.09‰ to −0.26 ± 0.04‰. This is the largest molybdenum isotopic variation in molybdenite
from high-temperature ore deposits recorded to date. δ97Mo‰ of molybdenite varies as a function of the deposit type and the rhenium and osmium concentrations of the samples. Isotope
values for Mo also vary within the individual deposits. In general, molybdenites from porphyry copper deposits have the lightest
values averaging 0.07 ± 0.23‰ (1σ). Molybdenites from the other deposit types average 0.49 ± 0.26‰ (1σ). The variations could be related to the fractionation of Mo into different mineral phases during the ore-forming processes.
A comparison of the Mo isotope ratios and the Re–Os ages obtained from the same aliquot may possess a geochronological evaluation
tool. Samples that yielded robust ages have different Mo isotopic compositions in comparison to samples that yielded geologically
unreasonable ages. Another observed relationship between the Re–Os and Mo isotope data reveals a weak correspondence between
Re concentration and Mo isotope composition. Molybdenites with higher concentrations of Re correspond to lighter Mo isotope
values. 相似文献
The Shah Soltan Ali area (SSA) is located in the eastern part of the Lut Block metallogenic province. In this area different types of sub-volcanic intrusions including diorite porphyry, monzonite porphyry and monzodiorite porphyry have intruded into basaltic and andesitic rocks. Zircon U–Pb dating and field observations indicate that intermediate to mafic volcanic rocks (38.9 Ma) are older than subvolcanic units (38.3 Ma). The subvolcanic intrusions show high-K calc-alkaline to shoshonitic affinity and are metaluminous. Based on mineralogy, high values of magnetic susceptibility [(634 to 3208) × 10?5 SI], and low initial 87Sr/86Sr ratios, they are classified as belonging to the magnetite-series of oxidant I-type granitoids and are characterized by an enrichment in LREEs relative to HREEs, with negative Nb, Ti, Zr and Eu anomalies. These granitoids are related to volcanic arc (VAG) and were generated in an active continental margin. Low initial 87Sr/86Sr ratios (0.7043 to 0.7052) and positive εNd values (+1.48 to +3.82) indicate that the parental magma was derived from mantle wedge. Parental magma was probably formed by low degree of partial melting and metasomatized by slab derived fluids. Then assimilation and fractional crystallization processes (AFC) produced the SSA rocks. This magma during the ascent was contaminated with the crustal material.All data suggest that Middle-Late Eocene epoch magmatism in the SSA area, occurred during subduction of Neo-Tethys Ocean in east of Iran (between Afghan and Lut Blocks). 相似文献