首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   9篇
测绘学   7篇
地球物理   30篇
地质学   48篇
海洋学   13篇
天文学   4篇
自然地理   13篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   9篇
  2010年   6篇
  2009年   9篇
  2008年   7篇
  2007年   3篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1961年   1篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
11.
More than 50 % of the world's total reserves of tungsten are in China and most tungsten deposits are located in the Nanling range in southeast China. This study explores the potential genetic relationship between tungsten–tin (W–Sn) mineralization and shallower Ag–Pb–Zn deposits in the Nanling range based on data from the Wutong deposit, Guangxi Province. The lead, oxygen, carbon, sulfur, and strontium isotopic compositions of minerals at Wutong indicate that a single crustal-derived fluid was responsible for mineralization. Wutong likely formed at relatively low temperatures (~200–300 °C) and low pressures, as indicated by the similarity between homogenization temperatures of fluid inclusions and those estimated from S isotopic compositions of minerals. The hübnerite age (92.3–104.4 Ma) indicates that the Wutong mineralization is likely related to nearby Late Yanshanian (Cretaceous) S-type granites derived from Proterozoic crust. This mineralization event coincides with the last W–Sn mineralization event and the Cretaceous peak of mineralization in the Nanling range.  相似文献   
12.
We demonstrate that conventional palaeoseismic trenching and mapping techniques that do not account for the effects of off‐fault deformation can significantly underestimate a fault’s slip rate. Using combined interpretations of 3‐D ground‐penetrating radar (GPR) and palaeoseismic trench data, we show that drag folding and hangingwall and footwall horizontal‐axis rotations have accommodated up to 41% of total extension across a normal fault within the Taupo Rift, New Zealand, over the past 24.6 ± 1.0 cal. ka BP. Our results may explain why geologically determined fault‐slip rates for the central and southern Taupo Rift are anomalously low when compared with geodetic estimates. We suggest that a combination of GPR surveying and palaeoseismic trenching may help resolve differences between geodetically and geologically determined strain rates observed across active extensional regimes worldwide.  相似文献   
13.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
14.
An inclinometer is a high-precision instrument used to detect displacement along sliding zones. From the time the inclinometer pipe is embedded to inclinometer calibration and to measured data collection and processing, many errors or misjudgments can occur that affect the measurement data. The most important objective for correctly using the observation results is the accurate interpretation of the horizontal displacement profiles obtained from the observation. This study combines existing inclusive data accumulated by a monitoring system on a test sloping site in a campus. It focuses on a comprehensive interpretation of the displacement relationships among different monitoring instruments. This study uses data interpretation principles, categorizes different mechanisms, and performs quantitative analysis and discussion in order to determine the significance presented by various types of monitored information in terms of slope sliding. In addition, in this study, stairwells in a campus building are used, an inclinometer is set up, and calibration equipment for the experiment is added in order to simulate various configurations and observe patterns for displacement curves. The examples for the various conditions include empty holes in the backfill around the pipe, connection points falling off, pipe torsion, relative sliding between layers reaching an extreme condition and leading to stuck pipes, multi-layered sliding, and different thicknesses in sliding zones. The experiment illustrates changes in behavior in terms of environmental factors. The results can be used for instrument calibration and measurement, and as a reference for disaster warning and prevention in hazardous areas with slopes.  相似文献   
15.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   
16.
Using an excimer (KrF) laser ablation ICP-MS system, we studied the distribution of REE in garnets from metapelites and metabasites from Ivrea-Verbano (Western Alps, Italy) and from the Peña Negra Anatectic Complex (Central Iberia), finding systematic variations that correlate well with the metamorphic grade. Chondrite-normalized REE patterns of garnets from amphibolite-grade metapelites have lower-than-chondrite levels from La to Sm, a very small or no Eu anomaly, and a steep rise in the abundance of heavy REE as the atomic number increases. Metapelitic garnets from the amphibolite-granulite transition have a marked Eu negative anomaly and are enriched in MREE such that Sm is 10-15 times chondrite and the pattern is almost flat from Dy to Yb-Lu. In garnets from granulite-grade metapelites, the intensity of the Eu anomaly and the relative concentration of Nd, Sm, Gd and Tb increase, with almost flat chondrite-normalized patterns from Sm to Lu. Garnets from mafic granulites are remarkably similar to those of metapelitic garnets equilibrated at the same pressure, except for the Eu anomaly. The apparent paradox of enhanced uptake of larger REE ions with increasing pressure is attributed to the 3M2+ 2REE3++ vacancy substitution, which produces a net decrease in the dimensions of the unit-cell of garnet. Variations in REE patterns depend essentially on the pressure and have little dependence on either temperature, bulk-composition of garnet, or REE whole-rock composition, so they could represent a new approach for geobarometric studies. The best numerical parameter to express pressure-related variations of REE distribution in garnets is the Gd/Dy ratio which does not seem perceptibly affected by disequilibrium partitioning. The regression equation between GASP pressure and the average Gd/Dygarnet is P = 3.6 + 5.6 Gd/Dy. This equation seems to be reliable for garnets: (1)equilibrated within a pressure range of 4-9 kbar, (2) coexisting with modal monazite; and (3) with unit-cell dimensions under 11.46 Å.  相似文献   
17.
A case study is presented to assess the relevance of geomorphology in hydrogeological phenomena in an arid coastal area in the Argentinean extra-Andean Patagonia (Península Valdés) with an average rainfall of 232 mm/year and a soil moisture deficit of about 472 mm/year. Various geomorphic units were identified by interpreting Landsat 7 satellite images processed with ER Mapper software and then surveyed in the field, as well as by geological characterization. The hydrodynamic analysis was based on a survey of 89 wells, the construction of equipotential maps, and the interpretation of pumping-test results by a non-equilibrium method. The hydrochemical characterization was based on chemical tests analyzed with the Easy_Quim 6.0 application. The combination of geomorphological, geological, hydrodynamic and hydrochemical elements allowed the definition of hydromorphological units that are typical of recharge, circulation and discharge areas, the latter both for coastal and inland areas in wetlands (salt pans) with elevations to ?40 m relative to sea level. These units and the criteria used for their definition allow immediate recognition of hydrogeological phenomena in arid regions such as the extra-Andean Patagonia, with low information density but with near-optimal satellite imaging of landforms due to the lack of vegetation cover.  相似文献   
18.
Very high concentrations of uranium (up to 4000 ppm) were found in a natural soil in the Dischma valley, an alpine region in the Grisons canton in Switzerland. The goal of this study was to examine the redox state and the nature of uranium binding in the soil matrix in order to understand the accumulation mechanism. Pore water profiles collected from Dischma soil revealed the establishment of anoxic conditions with increasing soil depth. A combination of chemical extraction methods and spectroscopy was applied to characterize the redox state and binding environment of uranium in the soil. Bicarbonate extraction under anoxic conditions released most of the uranium indicating that uranium occurs predominantly in the hexavalent form. Surprisingly, the uranium redox state did not vary greatly as a function of depth. X-ray absorption near edge spectroscopy (XANES), confirmed that uranium was present as a mixture of U(VI) and U(IV) with U(VI) dominating. Sequential extractions of soil samples showed that the dissolution of solid organic matter resulted in the simultaneous release of the majority of the soil uranium content (>95%). Extended X-ray absorption fine structure (EXAFS) spectroscopy also revealed that soil-associated uranium in the soil matrix was mainly octahedrally coordinated, with an average of 1.7 axial (at about 1.76 Å) and 4.6 to 5.3 equatorial oxygen atoms (at about 2.36 Å) indicating the dominance of a uranyl-like (UO22+) structure presumably mixed with some U(IV). An additional EXAFS signal (at about 3.2 Å) identified in some spectra suggested that uranium was also bound (via an oxygen atom) to a light element such as carbon, phosphorus or silicon. Gamma spectrometric measurements of soil profiles failed to identify uranium long-life daughter products in the soil which is an indication that uranium originates elsewhere and was transported to its current location by water. Finally, it was found that the release of uranium from the soil was significantly promoted at very low pH values (pH 2) and increased with increasing pH values (between pH 5 and 9).  相似文献   
19.
The rotational motion for an elastic Earth model with a homogeneous liquid core has been obtained using Hamilton's equations. From the canonical equations for the precessional and nutational motions in an inertial frame, the corresponding equations in an Earth fixed frame are deduced. The linearized equations obtained for polar motion and liquid core motion are equivalent to the Sasao-Okubo-Saito equations.  相似文献   
20.
The presence of steel-cased wells and other infrastructure causes a significant change in the electromagnetic fields that has to be taken into consideration in modeling and interpretation of field data. A realistic and accurate simulation requires the borehole casing to be incorporated into the modeling scheme, which is numerically challenging. Due to the huge conductivity contrast between the casing and surrounding media, a spatial discretization that provides accurate results at different spatial scales ranging from millimeters to hundreds of meters is required. In this paper, we present a full 3D frequency-domain electromagnetic modeling based on a parallel finite-difference algorithm considering the casing effect and investigate its applicability on the borehole-to-surface configuration of the Hontomín CO2 storage site. To guarantee a robust solution of linear systems with highly ill-conditioned matrices caused by huge conductivity contrasts and multiple spatial scales in the model, we employ direct sparse solvers. Different scenarios are simulated in order to study the influence of the source position, conductivity model, and the effect of the steel casing on the measured data. Several approximations of the real hollow casing that allow for a large reduction in the number of elements in the resulting meshes are studied. A good agreement between the modeled responses and the real field data demonstrates the feasibility of simulating casing effects in complex geological areas. The steel casing of the well greatly increases the amplitude of the surface electromagnetic fields and thus improves the signal-to-noise ratio and the sensitivity to deep targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号