首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
测绘学   3篇
大气科学   3篇
地球物理   1篇
地质学   8篇
天文学   16篇
自然地理   2篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有33条查询结果,搜索用时 78 毫秒
11.
A 435 kg piece of the Mont Dieu iron meteorite (MD) contains cm‐sized silicate inclusions. Based on the concentration of Ni, Ga, Ge, and Ir (8.59 ± 0.32 wt%, 25.4 ± 0.9 ppm, 61 ± 2 ppm, 7.1 ± 0.4 ppm, respectively) in the metal host, this piece can be classified as a IIE nonmagmatic iron. The silicate inclusions possess a chondritic mineralogy and relict chondrules occur throughout the inclusions. Major element analysis, oxygen isotopic analysis (Δ17O = 0.71 ± 0.02‰), and mean Fa and Fs molar contents (Fa15.7 ± 0.4 and Fs14.4 ± 0.5) indicate that MD originated as an H chondrite. Because of strong similarities with Netschaëvo IIE, MD can be classified in the most primitive subgroup of the IIE sequence. 40Ar/39Ar ages of 4536 ± 59 Ma and 4494 ± 95 Ma obtained on pyroxene and plagioclase inclusions show that MD belongs to the old (~4.5 Ga) group of IIE iron meteorites and that it has not been perturbed by any subsequent heating event following its formation. The primitive character of MD sheds light on the nature of its formation process, its thermal history, and the evolution of its parent body.  相似文献   
12.
Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.  相似文献   
13.
The chemical effects of terrestrial alteration, with a particular focus on lithophile trace elements, were studied for a set of H chondrites displaying various degrees of weathering from fresh falls to altered finds collected from hot deserts. According to their trace element distributions, a considerable fraction of rare earth elements (REEs), Th, and U resides within cracks observed in weathered meteorite specimens. These cracks appear to accumulate unbound REEs locally accompanied by Th and U relative to the major element abundances, especially P and Si. The deposition of Ce is observed in cracks in the case of most of the weathered samples. Trace element maps visually confirm the accumulation of these elements in such cracks, as previously inferred based on chemical leaching experiments. Because the positive Ce anomalies and unbound REE depositions in cracks occur in all weathered samples studied here while none of such features are observed in less altered samples including falls (except for altered fall sample Nuevo Mercurio), these features are interpreted to have been caused by terrestrial weathering following chemical leaching. However, the overall effects on the bulk chemical composition remain limited as the data for all Antarctic meteorites studied in this work (except for heavily weathered sample A 09516, H6) are in good agreement with published data for unaltered meteorites.  相似文献   
14.
A criterion, allowing one to assess conditions likely togenerate gap flows and/or hydraulicjumps in stratified flows over a mountain ridge or a mountain pass,is derived. It is based on the one-dimensional reduced-gravity shallow-watertheory generalized to a three-dimensional orography with moderate streamwisevariations by introducing a variable effective flow cross-section. In this way,the hydraulic jump and gap flow are accommodated within the same model. Theresulting steady hyperbolic problem is shown to require the boundaryconditions to be expressed in terms of Riemann invariants. The latter yield the flow betweentwo given sites in a unique way. In particular, it is possible to relateunambiguously the existence of a hydraulic jump/gap flow and its energydiscontinuity to the boundary conditions. A simple method of flow interpolationand energy discontinuity calculation between two sites is presented.  相似文献   
15.
The diurnal cycle of the atmospheric boundary layer (ABL) hasbeen documented on 8 August 1998 in the framework of the Étude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF) experiment that took place in the Paris area. The ABL structure was documented by means of a ground-based lidar, surface meteorological stations and soundings. The interaction between the residual layer and the convective boundary layer is investigated using the collected data as well as mesoscale modelling. As opposed to the generally accepted concept, we find evidence of entrainment at the top ofthe residual layer. High temporal simulations of the 8 August 1998 casemade with the mesoscale atmospheric model Meso-NH also show evidenceof mixing at the top of the residual layer (RL). This mixing is believed to be related to the presence of convective (gravity) waves in the RL.  相似文献   
16.
With a diameter of ∼100 km, Popigai in Northern Siberia is the largest crater known in the Cenozoic. The concentrations in platinum group elements (PGE) were analyzed in twenty samples of homogeneous impact melt collected in the northwestern flank of the crater to identify the composition of the projectile. The method selected was preconcentration by NiS fire assay followed by inductively coupled plasma-mass spectrometry (ICP-MS). This technique measures all the PGE (except Os) and by using aliquots >10g, the results are highly reproducible. The major and trace element composition of the impact melt resembles that of gneissic lithologies of the Anabar shield, which are representative of the target rock. The PGE are enriched in the melt by factors of 3 to 14 compared to the main target lithology, but the meteoritic contamination is only around 0.2 wt.%. Using plots of elemental ratios such as Ru/Rh vs. Pt/Pd or Ru/Rh vs. Pd/Ir, the Popigai impactor is clearly identified as an ordinary chondrite and most likely l-chondrite. This study indicates that PGE elemental ratios allow discrimination of the type of impactor, even in the case of low meteoritic contamination. This study confirms that a significant fraction of the crater-forming projectiles presently documented could have an ordinary chondrite composition. Their probable source, the S-type asteroids, appears to form the majority of the bodies in the main asteroid belt and among Near Earth Objects (NEOs). The ordinary chondrite origin of the Popigai projectile supports an asteroidal origin for the late Eocene impacts as a plausible alternative to the comet shower scenario proposed by Farley et al. (1998).  相似文献   
17.
Meteorite fusion crusts are quenched melt layers formed during meteoroid atmospheric entry, mostly preserved as coating on the meteorite surface. Antarctic ureilite Asuka (A) 09368 and H chondrites A 09004 and A 09502 exhibit well preserved thick fusion crusts, characterized by extensive olivine crystallization. As olivine is one of the major components of most meteorites and its petrologic behavior is well constrained, it can be roughly considered as representative for the bulk meteorite. Thus, in this work, the evolution of olivine in fusion crusts of the above‐listed selected samples is investigated. The different shape and chemistry of olivine crystallized in the fusion crust, both as overgrown rim on relic olivine clasts and as new crystals, suggest a general temperature and cooling rate gradient. The occurrence of reverse and oscillatory zoning in individual olivine grains within the fusion crust suggests complex redox reactions. Overall, the investigated fusion crusts exhibit a general oxidation of the relatively reduced initial material. However, evidence of local reduction is preserved. Reduction is likely triggered by the presence of carbon in the ureilite or by overheating during the atmospheric entry. Constraining these processes provides a potential analog for interpreting features observed in cosmic spherules and micrometeorites and for calibrating experiments and numerical models on the formation of fusion crusts.  相似文献   
18.
Main group pallasite meteorites are samples of a single early magmatic planetesimal, dominated by metal and olivine but containing accessory chromite, sulfide, phosphide, phosphates, and rare phosphoran olivine. They represent mixtures of core and mantle materials, but the environment of formation is poorly understood, with a quiescent core–mantle boundary, violent core–mantle mixture, or surface mixture all recently suggested. Here, we review main group pallasite data sets and petrologic characteristics, and present new observations on the low‐MnO pallasite Brahin that contains abundant fragmental olivine, but also rounded and angular olivine and potential evidence of sulfide–phosphide liquid immiscibility. A reassessment of the literature shows that low‐MnO and high‐FeO subgroups preferentially host rounded olivine and low‐temperature P2O5‐rich phases such as the Mg‐phosphate farringtonite and phosphoran olivine. These phases form after metal and silicate reservoirs back‐react during decreasing temperature after initial separation, resulting in oxidation of phosphorus and chromium. Farringtonite and phosphoran olivine have not been found in the common subgroup PMG, which are mechanical mixtures of olivine, chromite with moderate Al2O3 contents, primitive solid metal, and evolved liquid metal. Lower concentrations of Mn in olivine of the low‐MnO PMG subgroup, and high concentrations of Mn in low‐Al2O3 chromites, trace the development and escape of sulfide‐rich melt in pallasites and the partially chalcophile behavior for Mn in this environment. Pallasites with rounded olivine indicate that the core–mantle boundary of their planetesimal may not be a simple interface but rather a volume in which interactions between metal, silicate, and other components occur.  相似文献   
19.
Impact ejecta from the Albion Formation are exposed in northern Belize. The ejecta come from the outer portion of the continuous ejecta blanket of the Chicxulub crater, which is located 360 km to the northwest. The basal unit of the Albion Formation is a 1-m-thick clay and dolomite spheroid bed composed of up to four discrete flows. The clay spheroids are altered impact glass, and the dolomite spheroids are accretionary lapilli. The upper unit is a 15-m-thick coarse diamictite bed containing altered glass, large accretionary blocks, striated, polished, and impacted cobbles, and rare shocked quartz. The abundance of accretionary clasts, evidence for atmospheric drag sorting, and the presence of multiple flows in the Albion Formation indicate that atmospheres play an important role in the formation of the outer portions of continuous ejecta blankets of large craters.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号