首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5864篇
  免费   191篇
  国内免费   91篇
测绘学   169篇
大气科学   553篇
地球物理   1447篇
地质学   2024篇
海洋学   552篇
天文学   768篇
综合类   22篇
自然地理   611篇
  2021年   61篇
  2020年   65篇
  2019年   90篇
  2018年   124篇
  2017年   117篇
  2016年   158篇
  2015年   147篇
  2014年   204篇
  2013年   326篇
  2012年   246篇
  2011年   269篇
  2010年   196篇
  2009年   304篇
  2008年   289篇
  2007年   263篇
  2006年   222篇
  2005年   189篇
  2004年   199篇
  2003年   189篇
  2002年   192篇
  2001年   133篇
  2000年   138篇
  1999年   114篇
  1998年   107篇
  1997年   93篇
  1996年   86篇
  1995年   87篇
  1994年   79篇
  1993年   65篇
  1992年   65篇
  1991年   69篇
  1990年   67篇
  1989年   59篇
  1988年   58篇
  1987年   65篇
  1986年   43篇
  1985年   73篇
  1984年   80篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   38篇
  1977年   55篇
  1976年   63篇
  1975年   46篇
  1974年   57篇
  1973年   48篇
  1972年   25篇
排序方式: 共有6146条查询结果,搜索用时 15 毫秒
81.
Sixty-five million year old continental flood basalts crop out on Qeqertarssuaq Island and the Nuussuaq Peninsula in West Greenland, and they include ~1,000 m of picritic lavas and discrete 10- to 50-m-thick members of highly contaminated basalts. On Qeqertarssuaq, the lavas are allocated to the Vaîgat and Maligât Formations of which the former includes the Naujánguit member, which consists of picrites with 7–29 wt% MgO, 80–1,400 ppm Ni, 5.7–9.4 ppb Pt and 4.2–12.9 ppb Pd. The Naujánguit member contains two horizons of contaminated basalts, the Asûk and Kûgánguaq, which have elevated SiO2 (52–58 wt%) and low to moderate MgO (7.5–12.8 wt%). These lavas are broadly characterized by low Cu and Ni abundances (average, 40 ppm Ni and 45 ppm Cu) and very low Pt (0.16–0.63 ppb) and Pd (0.13–0.68 ppb) abundances, and in the case of the Asûk, they contain shale xenoliths and droplets of native iron and troilite. The contaminated basalts from Nuussuaq, the B0 to B4 members, are also usually Ni-, Cu-, and platinum-group elements (PGE)-depleted. The geochemical signatures (especially the ratios of incompatible trace elements such as Th/Nb) of all of the contaminated basalts from Qeqertarssuaq and some of those from Nuussuaq record what appears to be a chemical contribution from deltaic shales that lie immediately below the lavas. This suggests that the contamination of the magmas occurred during the migration of the magmas through plumbing systems developed in sedimentary rocks, and hence, at a high crustal level. Nickel, Cu, and PGE depletion together with geochemical signatures produced by crustal contamination are also a feature of Siberian Trap basalts from the Noril’sk region. These basalts belong to the 0- to 500-m thick, ~5,000- to 10,000-km3 Nadezhdinsky Formation, which is centered in the Noril’sk Region. A major difference between Siberia and West Greenland is that PGE depletion in the Nadezhdinsky Formation samples with the lowest Cu and Ni contents is much more severe than that of the West Greenland contaminated basalts. Moreover, the volumes of the contaminated and metal-depleted volcanic rocks in West Greenland pale is significant when compared to the Nadezhdinsky Formation; local centers rarely contain more than 15 thin flows with a combined thickness of <50 m and more typically 10–20 m, so the volume of the eruptive portions of each system is probably two orders of magnitude smaller than the Nadezhdinsky edifice. The West Greenland centres are juxtaposed along fault zones that appear to be linked to the subsidence of the Tertiary delta, and so emplacement along N–S structures appears to be a principal control on the distribution of lavas and feeder intrusions. This leads us to suggest that the Greenland system is small and segregation of sulphide took place at high levels in the crust, whereas at Noril’sk, the saturation event took place at depth with subsequent emplacement of sulphide-bearing magmas into high levels of the crust. As a consequence, it may be unreasonable to expect that the West Greenland flood basalts experienced mineralizing processes on the scale of the Noril’sk system.  相似文献   
82.
The baroclinic stability of Jupiter's zonal flow is investigated using a model consisting of two continuously stratified fluid layers. The upper layer, containing a zonal shear flow and representing the Jovian cloudy regions above p ~ 5 bars, is the same as Eady's (1949) model for the Earth. The lower layer has a relatively large but finite depth with a quiescent basic state, representing the deep Jovian fluid bulk below p ~ 5 bars. Due to the presence of the lower layer, the linearized non-dimensional growth rates are drastically reduced from the O(1) growth rates of the original Early model. Only very long wavelengths relative to the upper fluid's radius of deformation L1 are unstable. Eddy transports of heat are also reduced relative to estimates based on scaling arguments alone. Since the hydrostatic approximation for the lower-layer perturbation breaks down at great depths, a second model is presented in which energy propagates downward in an infinitely deep lower fluid obeying the full linearized fluid equations. In this model, the growth rates are again very small, but now all wavelengths are unstable with maximum growth rates occurring for wavelengths O(1) relative to L1. These results illustrate the importance for the upper-layer meteorology of the interface boundary condition with the lower fluid, which is radically different from the rigid lower boundary of the Earth's troposphere.  相似文献   
83.
Investigating the characteristics of model-forecast errors using various statistical and object-oriented methods is necessary for providing useful guidance to end-users and model developers as well. To this end, the random and systematic errors (i.e., biases) of the 2-m temperature and 10-m wind predictions of the NCAR-AirDat weather research and forecasting (WRF)-based real-time four-dimensional data assimilation (RTFDDA) and forecasting system are analyzed. This system has been running operationally over a contiguous United States (CONUS) domain at a 4-km grid spacing with four forecast cycles daily from June 2009 to September 2010. In the result an exceptionally useful forecast dataset was generated and used for studying the error properties of the model forecasts, in terms of both a longer time period and a broader coverage of geographic regions than previously studied. Spatiotemporal characteristics of the errors are investigated based on the 24-h forecasts between June 2009 and April 2010, and the 72-h forecasts between May and September 2010. It was found that the biases of both wind and temperature forecasts vary greatly seasonally and diurnally, with dependency on the forecast length, station elevation, geographical location, and meteorological conditions. The temperature showed systematic cold biases during the daytime at all station elevations and warm biases during the nighttime above 1,000 m above sea level (ASL), while below 600 m ASL cold biases occurred during the nighttime. The forecasts of surface wind speed exhibited strong positive biases during the nighttime, while the negative biases were observed in the spring and summer afternoons. The surface wind speed was mostly over-predicted except for the stations located between 1,000 and 2,100 m ASL, for which negative biases were identified for most forecast cycles. The highest wind-speed errors were found over the high terrain and near sea-level stations. The wind-direction errors were relatively large at the high-terrain elevation in the Rocky and Appalachian mountain ranges and the western coastal areas and the error structure exhibited notable diurnal variability.  相似文献   
84.
Aerobic granular sludge was successfully cultivated in a sequencing batch reactor (SBR) treating wastewater from the malting process with a high content of particulate organic matter. At an organic loading rate of 3.2 kg/(m3 d) CODtotal and an influent particle concentration of 0.95 g/L MLSS an average removal of 50% in CODtotal and 80% in CODdissolved could be achieved. A comparison of granular and flocculent sludge grown under the same operating conditions showed no significant difference in removal efficiency although granules exhibited a higher metabolic activity in terms of specific oxygen uptake rate (rO2, X). Two distinct mechanisms of particle removal were observed for granular sludge: during initial granule formation, particles were incorporated into the biofilm matrix. For mature granules, a high level of protozoa growth on the granule surface accounted for the ability to remove particulate COD. Combined evaluation of the development in MLSS content and sludge bed settling rate (i.e., mean derivative of the normalized sludge volume) was found to be an adequate method for monitoring the characteristic settling properties of a granulizing sludge bed. By means of this method, a distinct substrate gradient out of several operating conditions was concluded to have the biggest impact on the formation of aerobic granular sludge.  相似文献   
85.
138Ce/142Ce isotope ratios in Cenozoic island arc volcanic rocks are reported for the first time, together with isotope ratios of Nd and Sr and abundances of REE, Ba and Sr. The island arc volcanics studies here are boninites from Chichijima, the Bonin Islands, and basalts and andesites from the Solomon Islands. REE patterns of the island arc volcanic rocks from the Solmon Islands and the Bonin Islands are confirmed to have negative Ce anomalies. It is also disclosed that the majority of these island arc volcanic rocks show mainly positive values for both Ce and Nd. It is shown that these Ce and Ce values can hardly be interpreted by simple mixing between MORB and oceanic or continental crustal rocks; the former have positive Nd and negative Ce and the latter have negative Ce and positive or negative Nd. Existence of sources having positive Ce and Nd values is strongly suggested. If the sources are assumed to have been fractionated from CHUR (chondritic uniform reservoir) at the early or middle Precambrian era, the sources from which the volcanics were derived are concluded to have kept concave REE patterns with larger (La/Ce)N and smaller (Nd/Sm)N ratios than chondritic values over a substantial period of time, until the time of Cenozoic magmatism forming island arc volcanic rocks in question. During the periods of the Cenozoic magmatic activities and their related events, Ce anomalies are considered to have been created. From Ce and Nd isotope ratios, however, it is difficult to determine which of the following processes was responsible for the Ce anomaly; the incorporation process of subducted oceanic crust into magma at the mantle or the slab dehydration and metasomatism process. Nevertheless, so far as Ce and Nd isotopic ratios are concerned, incorporation of oceanic sediments did not take place to any clearly detectable degree.  相似文献   
86.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   
87.
Phytoplankton composition and biomass across the southern Indian Ocean   总被引:2,自引:0,他引:2  
Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 ??g Chl a L−1 with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 ??g L−1 in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensuZapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 ??g total Chl a L−1 in the surface, and up to 0.4 ??g Chl a L−1 at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX.  相似文献   
88.
89.
US regional and state migration data from the 1940s–80s, when members of the baby boom generation aged into their years of peak labor force mobility, suggest ways in which changing age composition regulates geographical mobility and interregional migration. Labor supply pressure plays a key role in the dynamics of the national migration system. A “delayed mobility” effect in the 1980s similar to the delayed fertility of the baby boom cohorts appears to be a result of the depressed rates of mobility experienced by members of this generation when they flooded regional labor markets with record numbers of entrants in the 1970s. Recent temporal shifts in age-specific volumes of interregional migration help predict the future pace of migration based upon the projected age distribution of the nation.  相似文献   
90.
Twentieth century observations show that during the last 50?years the sea-surface temperature (SST) of the tropical oceans has increased by ~0.5°C and the area of SST >26.5 and 28°C (arbitrarily referred to as the oceanic warm pool: OWP) by 15 and 50% respectively in association with an increase in green house gas concentrations, with non-understood natural variability or a combination of both. Based on CMIP3 projections the OWP is projected to double during twenty-first century in a moderate CO2 forcing scenario (IPCC A1B scenario). However, during the observational period the area of positive atmospheric heating (referred to as the dynamic warm pool, DWP), has remained constant. The threshold SST (T H ), which demarks the region of net heating and cooling, has increased from 26.6°C in the 1950s to 27.1°C in the last decade and it is projected to increase to ~28.5°C by 2100. Based on climate model simulations, the area of the DWP is projected to remain constant during the twenty-first century. Analysis of the paleoclimate model intercomparison project (PMIP I and II) simulations for the Last Glacial maximum and the Mid-Holocene periods show a very similar behaviour, with a larger OWP in periods of elevated tropical SST, and an almost constant DWP associated with a varying T H . The constancy of the DWP area, despite shifts in the background SST, is shown to be the result of a near exact matching between increases in the integrated convective heating within the DWP and the integrated radiative cooling outside the DWP as SST changes. Although the area of the DWP remains constant, the total tropical atmospheric heating is a strong function of the SST. For example the net heating has increased by about 10% from 1950 to 2000 and it is projected to increase by a further 20% by 2100. Such changes must be compensated by a more vigorous atmospheric circulation, with growth in convective heating within the warm pool, and an increase of subsiding air and stability outside the convective warm pool and an increase of vertical shear at the DWP boundaries. This finding is contrary to some conclusions from other studies but in accord with others. We discuss the similarities and differences at length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号