首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5807篇
  免费   188篇
  国内免费   89篇
测绘学   169篇
大气科学   551篇
地球物理   1443篇
地质学   1994篇
海洋学   549篇
天文学   756篇
综合类   22篇
自然地理   600篇
  2021年   61篇
  2020年   64篇
  2019年   87篇
  2018年   124篇
  2017年   116篇
  2016年   156篇
  2015年   144篇
  2014年   202篇
  2013年   325篇
  2012年   243篇
  2011年   263篇
  2010年   191篇
  2009年   304篇
  2008年   285篇
  2007年   262篇
  2006年   220篇
  2005年   188篇
  2004年   197篇
  2003年   189篇
  2002年   181篇
  2001年   133篇
  2000年   136篇
  1999年   113篇
  1998年   107篇
  1997年   91篇
  1996年   84篇
  1995年   85篇
  1994年   76篇
  1993年   63篇
  1992年   65篇
  1991年   69篇
  1990年   66篇
  1989年   59篇
  1988年   58篇
  1987年   66篇
  1986年   43篇
  1985年   73篇
  1984年   81篇
  1983年   72篇
  1982年   65篇
  1981年   77篇
  1980年   63篇
  1979年   58篇
  1978年   38篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6084条查询结果,搜索用时 0 毫秒
81.
Using microprobe laser-desorption, laser-ionization mass spectrometry (μL2MS), we measured the distributions of alkylated and unalkylated polycyclic aromatic hydrocarbons (PAHs) in the free organic material of 20 carbonaceous chondrites. These meteorites represent a variety of meteorite classes and alteration histories, including CI, CK, CM, CO, CR, CV, and Tagish Lake. This work provides information on free organic compounds that is complementary to studies of the structure and composition of meteoritic macromolecular content.For the nine CM2 meteorites analyzed, we observe that higher relative abundances of alkylated PAHs correlate with more intense aqueous activity. We attribute this correlation to the differences in solubility and volatility between unalkylated and alkylated PAHs. Naphthalene and its alkylation series are more susceptible to the effects of aqueous exposure than the less-soluble PAH phenanthrene and its alkylated derivatives. These observations are consistent with the possibility of chromatographic separations on the meteorite parent bodies. We identify six CM2 meteorites with similar PAH distributions that may represent the original, unaltered organic composition of the parent body.Increased metamorphic intensity reduces the abundance of all PAHs. The thermally metamorphosed CK chondrites had no detectable levels of typical meteoritic PAHs. This observation might be explained either by a loss of PAHs caused by volatilization or by a significantly different organic content of the CK parent body.  相似文献   
82.
Redistribution of HFSE elements during rutile replacement by titanite   总被引:2,自引:0,他引:2  
Titanite growth at the expense of rutile during retrograde hydration of eclogite into amphibolite is a common phenomenon. We investigated an amphibolite sample from the Tromsø eclogite facies terrain in Northern Norway to gain insight into the trace element distribution between rutile and titanite during incomplete resorption of the rutile by titanite. Patchy compositional zoning of Al, Ti, and F in titanite relates to the presence of a fluid with variable Ti/Al and/or F during its growth. Laser ablation ICP–MS and electron microprobe data for high field strength elements (HFSE: Nb, Zr, Ta, and Hf) of rutile resorbed by titanite indicate a pronounced enrichment of these elements in the rim of a large single rutile crystal (~8 mm) and a systematic decrease towards uniform HFSE contents in the large core. HFSE contents of smaller rutile grains (~0.5 mm) and rutile inclusions (<100 μm) in the titanite overgrowth are similar or higher than in the rims of large rutile crystals. Element profiles from the rim inward demonstrate that HFSE enrichment in rutile is controlled by diffusion. HFSE ratios in diffusion-altered rutile show systematic variations compared with the uniform core composition of the large rutile. Modelling of Zr and Nb diffusion in rutile indicates that diffusion coefficients in rutile in fluid-dominated natural systems must be considerably higher than those determined experimentally at 1 bar in dry systems. Variations of HFSE contents in the newly formed titanite show no systematic spatial distribution. HFSE ratios in titanite and the rims of rutile are different, indicating different solid/fluid distribution coefficients in these minerals. Element fractionation by diffusion into the relict rutile and during fluid-mediated growth of new titanite could substantially change the HFSE budget of these minerals and could affect their use for geochemical tracing and other applications, such as Zr-based geothermobarometry.  相似文献   
83.
Denitrification has been measured during the last few years using two different methods in particular: isotope pairing measured on a triple-collector isotopic ratio mass spectrometer and N2:Ar ratios measured on a membrane inlet mass spectrometer (MIMS). This study compares these two techniques in short-term batch experiments. Rates obtained using the original N2∶Ar method were up to 3 to 4 times higher than rates obtained using the isotope pairing technique due to O2 reacting with the N2 during MIMS analysis. Oxygen combines with N2 within the mass spectrometer ion source forming NO+ which reduces the N2 concentration. The decrease in N2 is least at lower O2 concentrations and since oxygen is typically consumed during incubations of sediment cores, the result is often a pseudo-increase in N2 concentration being interpreted as denitrification activity. The magnitude of this ocygen effect may be instrument specific. The reaction of O2 with N2 and the subsequent decrease in N2 was only partly correctly using an O2 correction curve for the relationship between N2 and O2 concentrations. The O2 corrected N2∶Ar denitrification rates were lower, but still did not match the isotope pairing rates and the variability between replicates was much higher. Using a copper reduction column heated to 600°C to remove all of the O2 from the sample before MIMS analysis resulted in comparable rates (slightly lower), and comparable variability between replicates, to the isotope pairing technique. The N2:Ar technique determines the net N2 production as the difference between N2 production by denitrification and N2 consumption by N-fixation, while N-fixation has little effect on the isotope pairing technique which determines a rate very close to the gross N2 production. When the two different techniques were applied on the same sediment, the small difference in rates obtained by the two methods seemed to reflect N-fixation as also supported from measurements of ethylene production in acetylene enriched sediment cores. The N2:Ar and isotope pairing techniques may be combined to provide simultaneous measurements of denitrification and N-fixation. Both techniques have several assumptions that must be met to achieve accurate rates; a number of tests are outlined that can be applied to demonstrate that these assumptions are being meet.  相似文献   
84.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   

85.
Major climatic changes and rapid local and regional tectonic movements were common in New Zealand during the late Quaternary and caused a diversity of adjustments in the drainage-basin and piedmont reaches of the Charwell River, which are separated by the Hope Fault. The onset of semi-arid, frigid climates during the latest Pleistocene probably greatly increased hillslope sediment yields in a periglacial environment, and the piedmont reach aggraded as much as 42 m on top of a broad strath. With the return of humid, mesic climates in the Holocene sediment yields decreased as dense forests again mantled the slopes, and the piedmont reach degraded as mush as 81 m. Dating of eleven cut-and-strath terraces by radiocarbon-calibrated weathering rind measurements on greyawake cobbles shows the degradation rates varied greatly during the last 14 ka (1 ka = 1000 yr). Initial degradation rates of < 4 m ka−1 increased to 30 m ka −1 by 6 ka ago during a mid-Holocene climatic optimum. Since 4 ka ago degradation rates have been only 1.2 m ka−1, comparable to uplift rates in the piedmont reach inferred from marine-terrace studies, and the river is again cutting a broad strath. Each broad strath represents equilibrium conditions attained by this powerful stream during interglacial times despite episodes of being overwhelmed by climatically induced sediment-yield increases during full-glacial climates and having to maintain a long-term degradation rate equal to the uplift rate.The 75–81 m of degradation since formation of the latest Pleistocene fill-terrace tread is the sum of the amount of late Pleistocene valley-floor aggradation and the amount of regional uplift that occurred between the estimated times of major strath formation at about 30 and 0 ka. The 39 m of tectonically induced degradation below the pre-aggradation strath is sufficiently large that post-30 ka uplift may have doubled Holocene degradation rates.Each of the eleven degradation terraces represents pauses of a few centuries in Holocene downcutting. Brief equilibrium conditions were attained by streambed armoring and concurrent growth of riparian plants; both processes progressively increased hydraulic roughness and the shear stresses needed to entrain streambed materials. Occasional floods, possibly from rare cyclones derived from tropical moisture sources, destroyed streambed armor and channel downcutting was renewed. Thus the formation of eleven equilibrium terraces can be accounted for without postulating additional tectonic perturbations or secular climatic changes.  相似文献   
86.
87.
88.
Concentration profiles of O2, NH4 +, NO3 , and PO4 3− were measured at high spatial resolution in a 12-cm thick benthic mat of the filamentous macroalga Chaetomorpha linum. Oxygen and nutrient concentration profiles varied depending on algal activity and water turbulence. High surface irradiance stimulated O2 production in the surface layers and introduced O2 to deeper parts of the mat while the bottom layers of the mat and the underlying sediment were anoxic. Nutrient concentrations were highest in the bottom layers of the mat directly above the sediment nutrient source and decreased towards the surface layers due to algal assimilation and enhanced mixing with the overlying water column. Increased turbulence during windy periods resulted in more homogeneous oxygen and nutrient concentration profiles and shifted the oxic-anoxic interface downward. Denitrification within the mat, as measured by the isotope pairing technique on addition of 15NO3 , was found to take place directly below the oxic-anoxic interface. Denitrification activity was always due to coupled nitrification-denitrification, whereby nitrifiers in the mat utilize NH4 + diffusing from below and O2 diffusing from above. The denitrification rate in the mat ranged from 22 μmol m−2 h−1 to 28 μmol m−2 h−1, approximately equivalent to that measured in the surrounding nonvegetated sediment. Although sediment denitrification is suppressed when the sediment surface is covered by a dense macroalgal mat, the denitrification zone may migrate up into the mat. In eutrophic estuaries with a large area of macroalgal cover, the physical structure and growth stage of algal mats may thus play an important role in the regulation of nitrogen removal by denitrification.  相似文献   
89.
The presence of amino acids in atmospheric precipitation and aerosols has been noted for many years, yet relatively little is known about these or other nitrogen containing organic compounds in the atmosphere. Marine and continental rainwater analyses indicate that atmospheric aerosols, and subsequently atmospheric precipitation, may contain substantial levels of free and combined amino acids. The most likely source of amino N in the remote marine atmosphere appears to be the injection of proteinaceous material through the action of bursting bubbles at the sea-air interface or the long range transport from terrestrial sources. The capacity of these substrates to undergo photooxidation and photodegradation in the atmosphere to simpler species, such as ammonium ions, carboxylic acids, and for the S containing amino acids, oxidized forms of sulfur, has received little attention from atmospheric chemists. The photochemistry of covalently bound amino groups, particularly as found in peptides and amino acids, is discussed here with the purpose of summarizing what is known of their occurrence and their possible importance to atmospheric chemistry.  相似文献   
90.
Peter Wilson 《Geology Today》2011,27(4):149-153
The Lake District is a region of great scenic beauty in north‐west England that has inspired artists and poets alike, and which comes high on the list of classic geological localities in Great Britain in terms of both bedrock and geomorphological features. With its inspiring views, the Lake District is often portrayed as the product of repeated glaciation, mainly because of the clarity of the erosional and depositional features that can be seen there. But since the last glaciers disappeared other processes have been modifying the landscape, processes that have superimposed their own signatures on to the glacial features. Hillslopes in particular have undergone significant changes, as a result of slope failures in both bedrock and superficial sediments. Although these landforms are not unknown, they have not received the same level of investigation as the glacial features, resulting in a limited appreciation of their spatial distribution and significance in reshaping the landscape. This article outlines the characteristics and origins of some slope failure types, and demonstrates that there is still much to learn about the Lake District landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号