首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1642篇
  免费   90篇
  国内免费   24篇
测绘学   28篇
大气科学   124篇
地球物理   442篇
地质学   603篇
海洋学   140篇
天文学   264篇
综合类   12篇
自然地理   143篇
  2023年   9篇
  2022年   7篇
  2021年   33篇
  2020年   28篇
  2019年   26篇
  2018年   49篇
  2017年   47篇
  2016年   57篇
  2015年   48篇
  2014年   65篇
  2013年   115篇
  2012年   65篇
  2011年   101篇
  2010年   79篇
  2009年   111篇
  2008年   85篇
  2007年   70篇
  2006年   66篇
  2005年   70篇
  2004年   58篇
  2003年   54篇
  2002年   62篇
  2001年   23篇
  2000年   25篇
  1999年   24篇
  1998年   26篇
  1997年   20篇
  1996年   30篇
  1995年   18篇
  1994年   21篇
  1993年   5篇
  1992年   24篇
  1991年   9篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   16篇
  1986年   11篇
  1985年   14篇
  1984年   15篇
  1983年   15篇
  1982年   21篇
  1981年   11篇
  1980年   19篇
  1979年   10篇
  1978年   8篇
  1977年   11篇
  1976年   9篇
  1975年   8篇
  1970年   4篇
排序方式: 共有1756条查询结果,搜索用时 46 毫秒
51.
52.
Stress measurements were carried out in the Arc syncline using drifs in a lignite mine. Eleven sites were investigated using the flat jack and hydraulic fracturing (or stimulating) methods. Two stress states were found to coexist, one isotropic, the other highly anisotropic. The orientations of the principal stresses are not homogeneous and an orientation ranging from E-W to NE-SW predominates locally. This does not accord with the regional stress field. The vertical stresses are systematically underestimated.  相似文献   
53.
The Maltese Islands: climate, vegetation and landscape   总被引:1,自引:0,他引:1  
The Maltese Islands, situated in the central Mediterranean, occupy an area of only some 316 km2. The climate is typically Mediterranean: the average annual rainfall is c. 530 mm of which some 85% falls during the period October to March; the mean monthly temperature range is 12--26 °C, and the islands are very windy and sunny. Although small, the Maltese Islands have a considerable diversity of landscapes and ecosystems which are representative of the range and variety of those of the Mediterranean region. The islands are composed mainly of limestones, the soils are young and are very similar to the parent rocks, and there are no mountains, streams or lakes, but only minor springs; the main geomorphological features are karstic limestone plateaux, hillsides covered with clay taluses, gently rolling limestone plains, valleys which drain runoff during the wet season, steep sea-cliffs on the south-western coasts, and gently sloping rocky shores to the Northeast. The main vegetational assemblages are maquis, garigue and steppe; minor ones include patches of woodland, coastal wetlands, sand dunes, freshwater, and rupestral communities; the latter are the most scientifically important in view of the large number of endemic species they support. Human impact is significant. Some 38% of the land area is cultivated, c. 15% is built up, and the rest is countryside. The present landscape is a result of the interaction of geology and climate, coupled with the intense human exploitation of the environment over many thousands of years, which has altered the original condition of the vegetation cover, principally through the diversion of vast tracts of land to cultivation, the construction of terraces, water catchment devices, irrigation channels and drainage ditches, the grazing of animals on uncultivated land, and the development of land for buildings and industry. The scantiness of the soil, combined with the erratic rainfall and the periodic disturbance of the vegetation cover, has resulted in extensive erosion. As a consequence it is now difficult for the original vegetation to reassert itself, affecting the landscape drastically and permanently. Much of the original native flora has been lost or marginalised and the present day non-urban landscape is now dominated by vegetation consisting mainly of ruderal and introduced species. As the population increases, and human pressure on the environment mounts, such trends are likely to continue and it is only very recently that some important initiatives have been taken to manage the environment and halt the deterioration of the landscape.  相似文献   
54.
AVHRR satellite imagery of the southern Mid-Atlantic Bight during May 1993 revealed a large area of cold water over the shelf break and slope that appeared to spin up into a series of southward propagating anticyclonic eddies. The eddies had diameters of 35–45 km at the surface and moved southward at about 20 cm/sec. A radial TOYO CTD (to 50m) and ADCP velocity (to 400m) transect was conducted across the southern-most of these eddies. The upper 50 meters had minimum temperatures of less than 7°C and salinities of about 33 pss, characteristics similar to cold pool waters usually found over the continental shelf. ADCP velocity data from one of the eddies revealed anticyclonic flow extending to a depth of about 250m. The transport of cold pool water by the eddies was estimated to be 0.1 to 0.2 Sv which is of the same order as the annual mean alongshore transport of shelf water in this region. The origin of the deeper water within the eddy is unlikely to be the continental shelf because the shelf break is less than 100 m. The depth and velocity profiles along the TOYO transect were consistent with the constant potential vorticity eddy model of Flierl (1979) although the source of the eddy kinetic energy is uncertain. The cause for the exodus of cold pool water from the shelf, which extended northward to at least 38°N, is unclear but must involve the establishment of an alongshore baroclinic pressure gradient against the usual southwestward shelf flow. It is possible that the intrusion of Gulf Stream waters onto the shelf near Cape Hatteras was a precursor of this off shelf transport. The southern-most eddy was marked by high biological productivity and very high oxygen supersaturation. The phytoplankton bloom detected within the exported cold pool water, located over the continental slope, suggests a mechanism whereby production fueled by nutrients derived from the shelf can be locally exported into deep water.  相似文献   
55.
56.
57.
In the Saoura, the brachiopod shell beds, so-called niveau coralligène, correspond to a major shell deposit dated to the Late Emsian. Brachiopods and crinoids dominate the benthic assemblage that contains also corals, bryozoans, trilobites, goniatites, and orthocones. This major level has a large geographic distribution and it is characterized by a wide brachiopod diversity due to time-averaging, taphonomic feedback and alternate bottom conditions changing from soft to shelly and firm. This kind of brachiopod association is linked to a transgressive onlap system. At regional extent, we can correlate this major shell bed to similar shell deposits from the Ahnet-Mouydir, Tindouf, and Zemmour areas. It indicates an important transgressive event underlined by change in the sedimentation from detritic deposits to carbonate sediments. To cite this article: A. Ouali Mehadji et al., C. R. Geoscience 336 (2004).  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号