A new dataset of first P-wave arrival times is used to derive the 3D tomographic model of the Campania-Lucania region in the
southern Apennines (Italy). We address the issue related to the non-uniqueness of the tomographic inversion solution through
massive numerical experimentation based on the global exploration of the model parameter space starting from a large variety
of physically plausible initial models. The average of all the realizations is adopted as the best-fit solution and the uncertainty
of the model parameters is studied using a statistical approach based on a Monte Carlo-type analysis. How the uncertainty
in the initial model, earthquake locations, and data influences the inversion result is studied by considering separately
the individual effects. Checkerboard tests are performed to estimate the resolving power of the dataset. Re-located seismicity
in a reliable new 3D tomographic model allows us to correlate the earthquake distribution with the main seismogenic structures
present in the area. 相似文献
Experimental Astronomy - At peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer... 相似文献
We present a simple method for tracing the spatial distribution and predicting the physical properties of the Warm–Hot Intergalactic Medium (WHIM), from the map of galaxy light in the Local Universe. Under the assumption that biasing is local and monotonic we map the ∼2 h −1 Mpc smoothed density field of galaxy light into the mass-density field, from which we infer the spatial distribution of the WHIM in the Local Supercluster. Taking into account the scatter in the WHIM density–temperature and density–metallicity relation, extracted from the z = 0 outputs of high-resolution and large-box-size hydrodynamical cosmological simulations, we are able to quantify the probability of detecting WHIM signatures in the form of absorption features in the X-ray spectra, along arbitrary directions in the sky. To illustrate the usefulness of this semi-analytical method we focus on the WHIM properties in the Virgo cluster region. 相似文献
The connection between thermal field and mechanical properties is analysed in the northern central Mediterranean region, extending from the Ligurian-Provençal basin to the Adriatic foredeep. As the thermal regime is still far from equilibrium in most of the tectonic units, transient thermal models are used. The temperature-depth distribution is estimated in four areas affected by the volcanic activity, which from the Neogene to the Present shifted from Corsica to the Apenninic arc. In the Adriatic foredeep, the thermal effects of the recent thrust-faulting phase in the buried sectors of the northern Apennines are taken into account.
The general context consists of convergence involving westward subduction of the Adriatic plate. This process caused anti-clockwise rotation of Corsica and Sardinia, which led to formation of the Ligurian marginal basin, and also resulted in crustal doubling and overthrusting in the northern Apennines and rifting in the northern Tyrrhenian.
Seismic activity is focused in the internal and external zones of the Apenninic arc, where low surface heat flux is observed, and in the western margin of the Ligurian-Provençal basin. This is a consequence not only of lateral variations in the thermal field but also of the different tectonic settings. Regional extensional patterns in the shallow crust, with minimum principal stress axes trending N60°E and E-W, are observed in the northern and in the southern sectors of the Apenninic arc, respectively. A compressional regime at depths greater than 30 km is observed below the northern sector of the arc, while to the south a change in the structure of the lithosphere is marked by a decrease in deeper seismic activity. Thrust faults and strike-slip faults with a thrust component support a compressional regime along the western margin of the Ligurian basin with maximum principal stress axis oriented N120°E.
Two lithospheric cross-sections across the study region are constructed, based on structural, thermal, gravity, rheological and seismic data. There is clear evidence of the presence of the subducting slab of the Adriatic plate, corresponding to a thickening of the uppermost brittle layer. The crustal seismicity cut-off corresponds to temperatures of 320–390°C. A brittle layer of considerable thickness is present in the uppermost mantle beneath Variscan Corsica and the Adriatic foredeep, with estimated seismic cut-off temperature of about 550 ± 50°C. 相似文献
Individual and monthly precipitation samples from the polluted atmosphere of Bologna (Emilia-Romagna province) were collected during March 1996 to May 1997 and analyzed for major ions in solution and S isotopes in dissolved SO4.Weighted mean enrichment factors relative to seawater are found to be 1.0 for Na, 15.2 for K, 105 for Ca, 3.3 for Mg, 17.3 for SO4 and 663 for HCO−3. Very good positive correlations are observed for the Ca2+–Mg2+–HCO−3–SO2−4–NO−3 system, indicating that dissolution of Ca (±Mg)-carbonate particles by H2SO4 and HNO3 from combustion of oil and gas is a major process controlling the chemical composition of rain and snow. Na+ and Cl− in monthly precipitation derive essentially from sea spray, but the contribution of Na+ from continental sources is appreciable in a number of individual rains. NH+4 appears to be on average more abundant in spring and summer precipitation, its main sources being microbial activity in soils and application of fertilizers. K+ is probably of continental origin from soil dust.The S isotopic composition of SO4 is systematically positive, with mean δ34S values of +3.2±1.6‰ (n=40) in individual precipitation and +2.8±1.4‰ (n=12) in monthly precipitation. These isotopic compositions are interpreted in terms of a dominant contribution of S from anthropogenic emissions and subordinate contributions from biogenic and marine sources. Pollutant SO4 is estimated to have a δ34S value in the range +2.5 to +4.5‰, whereas a distinctive δ34S of −4.5‰ or lower indicates SO4 from oxidation of biogenic gases.The isotopic and chemical compositions of SO4 do not depend on wind direction, thus testifying to a mostly local source for pollutant S in the Bologna atmosphere. 相似文献
Here we outline some recent activities in the theory and phenomenology of Galactic cosmic rays, in the light of the great precision of direct cosmic ray measurements reached in the last decade. In the energy domain of interest, ranging from a few GeV/nucleon to tens of TeV/nucleon, data have revealed some novel features requiring an explanation. We shall emphasize the importance of a more refined modeling, of achieving a better assessment of theoretical uncertainties associated to the models, and of testing key predictions specific of different models against the rich datasets available nowadays. Despite the still shaky theoretical situation, several hints have accumulated suggesting the need to go beyond the approximation of a homogeneous and non-dynamical diffusion coefficient in the Galaxy. 相似文献
Particle acceleration at non-relativistic shocks can be very efficient, leading to the appearance of non-linear effects due to the dynamical reaction of the accelerated particles on the shock structure and to the non-linear amplification of the magnetic field in the shock vicinity. The value of the maximum momentum, p max, in these circumstances cannot be estimated using the classical results obtained within the framework of test-particle approaches. We provide here the first attempt at estimating p max in the cosmic ray modified regime, taking into account the non-linear effects mentioned above. 相似文献
In performance-based seismic design, as adopted by several building codes worldwide, the structural performance is verified against ground motions that have predetermined exceedance return periods at the site of interest. Such a return period is evaluated by means of probabilistic seismic hazard analysis (PSHA), and the corresponding ground motion is often represented by the uniform hazard spectrum (UHS). The structural performance for ground motions larger than those considered in this design approach is, typically, not explicitly controlled under the assumption that they are sufficiently rare. On one hand, this does not achieve uniform safety at sites characterized by different design ground motions corresponding to the same return period; on the other hand, exceedances of the design spectra are systematically observed over large areas, for example in Italy. The latter issue is because of the nature of UHS, the exceedance of which is likely-to-almost-certain when the construction site is in the epicentral area of moderate-to-high magnitude earthquakes (ie, the design spectrum may be not conservative at these locations), especially if PSHA is based on seismic source zones. The former is partially because of the systematic difference of ground motions for return periods larger than the design one at the different sites. Quantification of the expected ground motion given the exceedance of the design ground motions (ie, the recently introduced as the expected peak-over-threshold or POT) can be of help in quantitatively assessing these issues. In the study, a procedure to compute the POT distribution is derived first; second, POT spectra are introduced and used to help understanding why and how seismic structural reliability of code-conforming structures decreases as the seismic hazard of the site increases; third, expected and 95th percentile POT maps are shown for Italy to discuss how much high hazard sites are exposed to much larger peak-over-threshold with respect to mid-hazard and low-hazard sites; finally the POT is discussed with respect to the slope of the hazard curve (in log-log scale) at the threshold, a known proxy for ground motion beyond design. All data presented in the maps are made available for the interested reader as a supplemental archive. 相似文献
Summary The surface thermal flux of the continental margins of the northwestern Mediterranean Sea is interpreted on the basis of a 1-D instantaneous pure shear stretching model of the lithosphere in terms of three components: the background heat flowing out from the asthenosphere (38 mW m–2), the transient contribution depending on the rift age and extension amount (35 mW m–2 at the most), and the contribution due to the radiogenic elements of the lithosphere. The radiogenic component is estimated at the continental margins of the Ligurian-Provençal basin and Valencia trough, and in the surrounding mainland areas by means of available data of surface heat generation from Variscan Corsica, Maures-Estérel and the Central Massif along with a geophysical-petrological relationship between heat production and seismic velocity. The lithosphere radiogenic heat contribution ql decreases with the thinning factor according to the exponential law: ql() = a exp(-b), in which factor b is greater for that part of the lithosphere below the uppermost 10 km. Considering also the heat generated by radioactive isotopes in sediments, the stable Variscan lithosphere produces an average thermal flux of 30 mW m–2 which decreases by about one half where the lithosphere is thinned by one third. Although the surface heat generation is 2·1 – 3·3 µW m–3 in the Maures-Estérel massif — excepting small outcrops of dioritic rocks with lower heat production — and 1·8 µW m–3 for most of Corsica, the radiogenic heating within the lithosphere for such areas is nearly the same and does not explain the higher heat flux of the Corsica margin. This asymmetric thermal pattern with surface heat flux which is 10 – 15 mW m–2 higher than predictions is probably of upper mantle origin, or can be ascribed to penetrative magmatism. 相似文献
For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H=15, down to sub-kilometer sizes (H>18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a/e/i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR=12-22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR=23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR=18 down to the mR?23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H=15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H?15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H=15-19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample. 相似文献